Latest development of double perovskite electrode materials for solid oxide fuel cells: a review
- 36 Downloads
Abstract
Recently, the development and fabrication of electrode component of the solid oxide fuel cell (SOFC) have gained a significant importance, especially after the advent of electrode supported SOFCs. The function of the electrode involves the facilitation of fuel gas diffusion, oxidation of the fuel, transport of electrons, and transport of the byproduct of the electrochemical reaction. Impressive progress has been made in the development of alternative electrode materials with mixed conducting properties and a few of the other composite cermets. During the operation of a SOFC, it is necessary to avoid carburization and sulfidation problems. The present review focuses on the various aspects pertaining to a potential electrode material, the double perovskite, as an anode and cathode in the SOFC. More than 150 SOFCs electrode compositions which had been investigated in the literature have been analyzed. An evaluation has been performed in terms of phase, structure, diffraction pattern, electrical conductivity, and power density. Various methods adopted to determine the quality of electrode component have been provided in detail. This review comprises the literature values to suggest possible direction for future research.
Keywords
double perovskites electrode materials hydrocarbon fuel solid oxide fuel cellsPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
The University Graduate Scholarship (UGS) of Universiti Brunei Darussalam is gratefully acknowledged. This work was supported by the project No. UBD/RSCH/URC/RG(6)2018/002.
References
- 1.Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, Irvine J T S, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209CrossRefGoogle Scholar
- 2.Andújar J M, Segura F. Fuel cells: history and updating. A walk along two centuries. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2309–2322CrossRefGoogle Scholar
- 3.Abdalla A M, Hossain S, Petra P M, Ghasemi M, Azad A K. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Frontiers in Energy, 2018, 12(1): 1–24CrossRefGoogle Scholar
- 4.Abdalla A M, Hossain S, Nisfindy O B, Azad A T, Dawood M, Azad A K. Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Conversion and Management, 2018, 165: 602–627CrossRefGoogle Scholar
- 5.Wang S, Jiang S P. Prospects of fuel cell technologies. National Science Review, 2017, 4(2): 163–166CrossRefGoogle Scholar
- 6.Garche J, Jurissen L. Applications of fuel cell technology: status and perspectives. Electrochemical Society Interface, 2015, 24(2): 39–43CrossRefGoogle Scholar
- 7.U.S. Department of Energy. Fuel cell technologies office. 2015, available at energy.gov website
- 8.Johnson Matthey P L C. Fuel cell applications-fuel cell today. 2018-11-22, available at fuelcelltoday.com webite
- 9.Financial Times. Japan is betting future cars will use hydrogen fuel cells. 2018-03-27, available at ft.com websiteGoogle Scholar
- 10.Nissan Motor Corporation. Runnig on e-Bio: Nissan’s solid oxide fuel cell system. 2016-06-14, available at nissan-global.com website
- 11.INSIDEEVS. Navigant: fuel cell vehicle sales to exceed 228000 units by 2024. 2015-12-27, available at insideevs.com website
- 12.Ang S M C, Fraga E S, Brandon N P, Samsatli N J, Brett D J L. Fuel cell systems optimisation-methods and strategies. International Journal of Hydrogen Energy, 2011, 36(22): 14678–14703CrossRefGoogle Scholar
- 13.Stambouli A B, Traversa E, Stambouli A. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455CrossRefGoogle Scholar
- 14.Laosiripojana N, Wiyaratn W, Kiatkittipong W, Arpornwichanop A, Soottitantawat A, Assabumrungrat S. Reviews on solid oxide fuel cell technology. Engineering Journal (New York), 2009, 13(1): 65–84Google Scholar
- 15.Minh N Q. Solid oxide fuel cell technology-features and applications. Solid State Ionics, 2004, 174(1–4): 271–277CrossRefGoogle Scholar
- 16.Bao C, Wang Y, Feng D L, Jiang Z, Zhang X. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system. Progress in Energy and Combustion Science, 2018, 66: 83–140CrossRefGoogle Scholar
- 17.Rits V, Kypreos S, Wokaun A. Evaluating the diffusion offuel-cell cars in the China markets. IATSS Research, 2004, 28(1): 34–46CrossRefGoogle Scholar
- 18.Venture Radar. SOFC | Venture Radar Search. 2018, available at ventureradar.com website
- 19.Business Wire.Top emerging trends in the global solid oxide fuel cell market| Technavio. 2018-04-04, available at businesswire.com website
- 20.Markets and Markets. Solid oxide fuel cell market by type (planar and tubular), application (power generation, combined heat & power, and military), end-use (data centers, commercial & retail, and APU), region (north America, Asia Pacific, and Europe)-global forecast to 2025. 2017, available at marketsandmarkets.com website
- 21.Abdalla A M, Hossain S, Zhou J, Petra PMI, Erikson S, Savaniu C D, Irvine J T S, Azad A K. NdBaMn2O5+δ layered perovskite as an active cathode material for solid oxide fuel cells. Ceramics International, 2017, 43(17): 15932–15938CrossRefGoogle Scholar
- 22.Taroco H A, Santos J A F, Domingues R Z, Matencio T. Ceramic materials for solid oxide fuel cells. 2011, available at intechopen.com website
- 23.Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, Irvine J T S, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209CrossRefGoogle Scholar
- 24.Liu Q, Dong X, Xiao G, Zhao F, Chen F. A Novel electrode material for symmetrical SOFCs. Advanced Materials, 2010, 22(48): 5478–5482CrossRefGoogle Scholar
- 25.Huang Y H. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257CrossRefGoogle Scholar
- 26.Atkinson A, Barnett S, Gorte R J, Irvine J T S, McEvoy A J, Mogensen M, Singhal S C, Vohs J. Advanced anodes for high-temperature fuel cells. Nature Materials, 2004, 3(1): 17–27CrossRefGoogle Scholar
- 27.Zhang L, He T. Performance of double-perovskite Sr2 xSmxMgMoO6 δ as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196(20): 8352–8359CrossRefGoogle Scholar
- 28.Steele B C, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352CrossRefGoogle Scholar
- 29.Singhal S C. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 2002, 152–153: 405–410CrossRefGoogle Scholar
- 30.Shao Z, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170–173CrossRefGoogle Scholar
- 31.Han D, Liu X, Zeng F, Qian J, Wu T, Zhan Z. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Scientific Reports, 2012, 2(1): 462CrossRefGoogle Scholar
- 32.Murray E P, Tsai T, Barnett S A. A direct-methane fuel cell with a ceria-based anode. Nature, 1999, 400(6745): 649–651CrossRefGoogle Scholar
- 33.Park S, Vohs J, Gorte R. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265–267CrossRefGoogle Scholar
- 34.McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells. Chemical Reviews, 2004, 104(10): 4845–4866CrossRefGoogle Scholar
- 35.Abdalla A M, Hossain S, Azad A T, Petra P M I, Begum F, Eriksson S G, Azad A K. Nanomaterials for solid oxide fuel cells: a review. Renewable & Sustainable Energy Reviews, 2018, 82: 353–368CrossRefGoogle Scholar
- 36.Safran. Fuel cells: green energy on board. 2018-11-22, available at safran-group.com website
- 37.Reza M S, Ahmed A, Caesarendra W, Abu Bakar M S, Shams S, Saidur R, Aslfattahi N, Azad A K. Acacia holosericea: an invasive species for bio-char, bio-oil, and biogas production. Bioengineering Multidisciplinary Digital Publishing Institute, 2019, 6(2): 33Google Scholar
- 38.Justin Fitzgerald and Nancy O’Bryan. NASA- Fuel cells: a better energy source for earth and space. 2005-11-02, available at nasa.gov website
- 39.Singhal S. Advances in solid oxide fuel cell technology. Solid State Ionics, 2000, 135(1–4): 305–313CrossRefGoogle Scholar
- 40.Tao S W, Irvine J T S. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Advanced Materials, 2006, 18(12): 1581–1584CrossRefGoogle Scholar
- 41.Radenahmad N, Afif A, Petra P I, Rahman S M H, Eriksson S G, Azad A K. Proton-conducting electrolytes for direct methanol and direct urea fuel cells-a state-of-the-art review. Renewable & Sustainable Energy Reviews, 2016, 57: 1347–1358CrossRefGoogle Scholar
- 42.Malavasi L, Fisher C A J, Islam M S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chemical Society Reviews, 2010, 39(11): 4370–4387CrossRefGoogle Scholar
- 43.Hossain S, Abdalla A M, Jamain S N B, Zaini J H, Azad A K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable & Sustainable Energy Reviews, 2017, 79: 750–764CrossRefGoogle Scholar
- 44.Liu M, Lynch M E, Blinn K, Alamgir F M, Choi Y M. Rational SOFC material design: new advances and tools. Materials Today, 2011, 14(11): 534–546CrossRefGoogle Scholar
- 45.Cologna M. Advances in the production of planar and micro-tubular solid oxide fuel cells. Dissertation for the Doctoral Degree. Trento: University of TrentoGoogle Scholar
- 46.Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455CrossRefGoogle Scholar
- 47.Hatchwell C E, Sammes N M, Kendall K. Cathode current-collectors for a novel tubular SOFC design. Journal of Power Sources, 1998, 70(1): 85–90CrossRefGoogle Scholar
- 48.National Energy Technology Laboratory. Solid oxide fuel cell. 2018-11-26, available at netl.doe.gov website
- 49.Vaillant unveils wall-mounted CHP unit, using staxera SOFC. Fuel Cells Bulletin, 2011, 5: 4Google Scholar
- 50.Kupecki J. Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME. International Journal of Hydrogen Energy, 2015, 40(35): 12009–12022CrossRefGoogle Scholar
- 51.SOLID power. For private households-SOLID power. 2018-11-26, available at solidpower.com website
- 52.Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018CrossRefGoogle Scholar
- 53.Cava R J, Batlogg B, Krajewski J J, Farrow R, Rupp L W, White A E, Short K, Peck W F, Kometani T. Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature, 1988, 332 (6167): 814–816CrossRefGoogle Scholar
- 54.Zhang Z, Li J, Zhou W, Yang C, Cao Q, Wang D, Du Y. Mechanism of enhancement in magnetoresistance properties of manganite perovskite ceramics by current annealing. Ceramics International, 2018, 44(4): 3760–3764CrossRefGoogle Scholar
- 55.Afroze S, Binti Haji Bakar A N, Reza M S, Salam M A. Polyvinylidene fluoride (PVDF) piezoelectric energy harvesting from rotary retracting mechanism: imitating forearm motion. IET Conference Publications, 2018Google Scholar
- 56.Schlom D G, Chen L Q, Pan X, Schmehl A, Zurbuchen M A. A thin film approach to engineering functionality into oxides. Journal of the American Ceramic Society, 2008, 91(8): 2429–2454CrossRefGoogle Scholar
- 57.Locock A J, Mitchell R H. Perovskite classification: an excel spreadsheet to determine and depict end-member proportions for the perovskite- and vapnikite-subgroups of the perovskite supergroup. Computers & Geosciences, 2018, 113: 106–114CrossRefGoogle Scholar
- 58.Li R, Yu C, Shen S. Partial oxidation of methane to syngas using lattice oxygen of La1 xSrxFeO3 perovskite oxide catalysts instead of molecular oxygen. Journal of Natural Gas Chemistry, 2002, 11: 137–144Google Scholar
- 59.El-Ads E. Perovskite nanomaterials-synthesis, characterization, and applications. InTech, 2016: 107–151Google Scholar
- 60.Azad A K. Synthesis, structure, and magnetic properties of double perovskites of the type A2MnBO6 and A 2FeBO6 (A = Ca, Sr, Ba, La; B = W, Mo, Cr). 2004, available at lib.ugent.be website
- 61.Azad A K, Mellergård A, Eriksson S G, Ivanov S A, Eriksen J, Rundlöf H. Preparation, crystal and magnetic structure of the double perovskite Ba2FeWO6. Applied Physics A: Materials Science & Processing, 2002, 74(Sup. 1): s763–s765CrossRefGoogle Scholar
- 62.Azad A, Eriksson S G. Formation of a cubic Sr2MnWO6 phase at elevated temperature: a neutron powder diffraction study. Solid State Communications, 2003, 126(9): 503–508CrossRefGoogle Scholar
- 63.Azad A, Eriksson S G, Ivanov S, Mathieu R, Svedlindh P, Eriksen J, Rundlöf H. Synthesis, structural and magnetic characterisation of the double perovskite A 2MnMoO6 (A = Ba, Sr). Journal of Alloys and Compounds, 2004, 364(1–2): 77–82CrossRefGoogle Scholar
- 64.Azad A K, Ivanov S, Eriksson S G, Rundlöf H, Eriksen J, Mathieu R, Svedlindh P. Structural and magnetic properties of the double perovskite Sr2MnWO6. Journal of Magnetism and Magnetic Materials, 2001, 237(2): 124–134CrossRefGoogle Scholar
- 65.Azad A K, Ivanov S A, Eriksson S G, Eriksen J, Rundlöf H, Mathieu R, Svedlindh P. Nuclear and magnetic structure of Ca2MnWO6: a neutron powder diffraction study. Materials Research Bulletin, 2001, 36(13–14): 2485–2496CrossRefGoogle Scholar
- 66.Azad A K, Eriksson S G, Ivanov S A, Rundlöf H, Eriksen J, Mathieu R, Svedlindh P. Structural and magnetic characterisation of the double perovskites AA′MnWO6 (AA′ = Ba2, SrBa, Sr2, SrCa and Ca2). Ferroelectrics, 2002, 269(1): 105–110CrossRefGoogle Scholar
- 67.Huang Y H, Dass R I, Xing Z L, Goodenough J B. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257CrossRefGoogle Scholar
- 68.Zhang P, Huang Y H, Cheng J G, Mao Z Q, Goodenough J B. Sr2CoMoO6 anode for solid oxide fuel cell running on {H2} and {CH4} fuels. Journal of Power Sources, 2011, 196(4): 1738–1743CrossRefGoogle Scholar
- 69.Xiao G, Liu Q, Dong X, Huang K, Chen F. Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(24): 8071–8074CrossRefGoogle Scholar
- 70.Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Pérez-Coll D, Aranda MAG, Núñez P. Synthesis, phase stability and electrical conductivity of Sr2MgMoO6−δ anode. Materials Research Bulletin, 2008, 43(8–9): 2441–2450CrossRefGoogle Scholar
- 71.Bernuy-Lopez C, Allix M, Bridges C A, Claridge J B, Rosseinsky M J. Sr2MgMoO6−δ: structure, phase stability, and cation site order control of reduction. Chemistry of Materials, 2007, 19(5): 1035–1043CrossRefGoogle Scholar
- 72.Vasala S, Lehtimäki M, Huang Y H, Yamauchi H, Goodenough J B, Karppinen M. Degree of order and redox balance in B-site ordered double-perovskite oxides, Sr2MMoO6−δ (M = Mg, Mn, Fe, Co, Ni, Zn). Journal of Solid State Chemistry, 2010, 183(5): 1007–1012CrossRefGoogle Scholar
- 73.Azizi F, Kahoul A, Azizi A. Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium. Journal of Alloys and Compounds, 2009, 484 (1–2): 555–560CrossRefGoogle Scholar
- 74.Huang Y H, Dass R I, Denyszyn J C, Goodenough J B. Synthesis and characterization of Sr2MgMoO6−δ: an anode material for the solid oxide fuel cell. Journal of the Electrochemical Society, 2006, 153(7): A1266–A1272CrossRefGoogle Scholar
- 75.Xie Z, Zhao H, Du Z, Chen T. Effects of Co doping on the electrochemical performance of double perovskite oxide Sr2MgMoO6−δ as an anode material for solid oxide fuel cells. Journal of Physical Chemistry, 2012, 116: 9734–9743Google Scholar
- 76.Pan X, Wang Z, He B, Wang S, Wu X, Xia C. Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell. International Journal of Hydrogen Energy, 2013, 38(10): 4108–4115CrossRefGoogle Scholar
- 77.Xie Z, Zhao H, Chen T, Zhou X, Du Z. Synthesis and electrical properties of Al-doped Sr2MgMoO6−δ as an anode material for solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36(12): 7257–7264CrossRefGoogle Scholar
- 78.Goldschmidt V M. Die Gesetze der Krystallochemie. Naturwissenschaften, 1926, 14(21): 477–485CrossRefGoogle Scholar
- 79.Shannon R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallographica, 1976, 32(5): 751–767CrossRefGoogle Scholar
- 80.Rebaza A V G, Toro C E D, Téllez D A L, Roa-Rojas J. Electronic structure of the double perovskite Ba2Er(Nb,Sb)O6. Journal of Physics: Conference Series, 2014, 480: 012041Google Scholar
- 81.Fu W T, IJdo D J W. X-ray and neutron powder diffraction study of the double perovskites Ba2LnSbO6 (Ln = La, Pr, Nd and Sm). Journal of Solid State Chemistry, 2005, 178(7): 2363–2367CrossRefGoogle Scholar
- 82.Gopalakrishnan J, Chattopadhyay A, Ogale SB, Venkatesan T, Greene R L, Millis A J, Ramesha K, Hannoyer B, Marest G. Metallic and nonmetallic double perovskites: a case study of A 2FeReO6 (A = Ca, Sr, Ba). 2000, 62(14): 9538–9542Google Scholar
- 83.Davis M J, Mugavero S J III, Glab K I, Smith M D, zur Loye H C. The crystal growth and characterization of the lanthanide-containing double perovskites Ln 2NaIrO6 (Ln = La, Pr, Nd). Solid State Sciences, 2004, 6(5): 413–417CrossRefGoogle Scholar
- 84.Yamamura K, Wakeshima M, Hinatsu Y. Structural phase transition and magnetic properties of double perovskites Ba2CaMO6 (M =W, Re, Os). Journal of Solid State Chemistry, 2006, 179(3): 605–612CrossRefGoogle Scholar
- 85.Gens R, Fuger J, Morss L R, Williams C W. Thermodynamics of actinide perovskite-type oxides III. Molar enthalpies of formation of B2MAnO6 (M = Mg, Ca, or Sr; An = U, Np, or Pu) and M 3PuO6 (M = Ba or Sr). Journal of Chemical Thermodynamics, 1985, 17 (6): 561–573CrossRefGoogle Scholar
- 86.Fu W T, IJdo D J W. Re-examination of the structure of Ba2MIrO6 (M= La, Y): space group revised. Journal of Alloys and Compounds, 2005, 394(1–2): 10–13Google Scholar
- 87.Bharti C, Sinha T P. Dielectric properties of rare earth double perovskite oxide Sr2CeSbO6. Solid State Sciences, 2010, 12(4): 498–502CrossRefGoogle Scholar
- 88.Shaheen R, Bashir J. Ca2CoNbO6: a new monoclinically distorted double perovskite. Solid State Sciences, 2010, 12(8): 1496–1499CrossRefGoogle Scholar
- 89.Gemmill W R, Smith M D, zur Loye H C. Synthesis, structural characterization, and magnetic properties of the antiferromagnetic double perovskites Ln 2LiOsO6 (Ln = La, Pr, Nd, Sm). Journal of Solid State Chemistry, 2006, 179(6): 1750–1756CrossRefGoogle Scholar
- 90.Zhang Y, Ji V. Half-metallic ferromagnetic nature of the double perovskite Pb2FeMoO6 from first-principle calculations. Journal of Physics and Chemistry of Solids, 2012, 73(9): 1116–1121CrossRefGoogle Scholar
- 91.Mugavero S J III, Smith M D, zur Loye H C. The crystal growth and magnetic properties of Ln 2LiIrO6 (Ln = La, Pr, Nd, Sm, Eu). Journal of Solid State Chemistry, 2005, 178(1): 200–206Google Scholar
- 92.Zhou Q, Kennedy B J, Howard C J, Elcombe M M, Studer A J. Structural phase transitions in A 2 xSrxNiWO6 (A = Ca or Ba, 0⩽x⩽2) double perovskites. Chemistry of Materials, 2005, 17 (21): 5357–5365CrossRefGoogle Scholar
- 93.Azad A, Eriksson S G, Ivanov S, Mathieu R, Svedlindh P, Eriksen J, Rundlöf H. Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6 (A = Ba, Sr). Journal of Alloys and Compounds, 2004, 364(1–2): 77–82CrossRefGoogle Scholar
- 94.Strandbakke R, Cherepanov V A, Zuev A Y, Tsvetkov D S, Argirusis C, Sourkouni G, Prünte S, Norby T. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics, 2015, 278: 120–132CrossRefGoogle Scholar
- 95.Philipp J B, Majewski P, Alff L, Erb A, Gross R, Graf T, Brandt M S, Simon J, Walther T, Mader W, Topwal D, Sarma D D. Structural and doping effects in the half-metallic double perovskite A2CrWO6. Physical Review. B, 2003, 68(14): 144431CrossRefGoogle Scholar
- 96.Popov G, Greenblatt M, Croft M. Large effects of A-site average cation size on the properties of the double perovskites Ba2−xSrx MnReO6:a d 5−d 1 system. Physical Review. B, 2003, 67(2): 024406CrossRefGoogle Scholar
- 97.Westerburg W, Lang O, Ritter C, Felser C, Tremel W, Jakob G. Magnetic and structural properties of the double-perovskite Ca2FeReO6. Solid State Communications, 2002, 122(3–4): 201–206CrossRefGoogle Scholar
- 98.Falcón H, Barbero J A, Araujo G, Casaisc M T, Martínez-Lope M J, Alonso J A, Fierro J L G. Double perovskite oxides A 2FeMoO6−δ (A = Ca, Sr and Ba) as catalysts for methane combustion. Applied Catalysis B: Environmental, 2004, 53(1): 37–45CrossRefGoogle Scholar
- 99.Retuerto M, Alonso J A, García-Hernández M, Martínez-Lope M J. Synthesis, structure and magnetic properties of the new double perovskite Ca2CrSbO6. Solid State Communications, 2006, 139 (1): 19–22CrossRefGoogle Scholar
- 100.Hu R, Ding R, Chen J, Hu J, Zhang Y. Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion. Catalysis Communications, 2012, 21: 38–41CrossRefGoogle Scholar
- 101.Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018CrossRefGoogle Scholar
- 102.Parfitt D, Chroneos A, Tarancón A, Kilner J A. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ. Journal of Materials Chemistry, 2011, 21(7): 2183–2186CrossRefGoogle Scholar
- 103.Presto S, Kumar P, Varma S, Viviani M, Singh P. Electrical conductivity of NiMo-based double perovskites under SOFC anodic conditions. International Journal of Hydrogen Energy, 2018, 43(9): 4528–4533CrossRefGoogle Scholar
- 104.Fu D, Jin F, He T. A-site calcium-doped Pr1−xCaxBaCo2O5+δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313: 134–141CrossRefGoogle Scholar
- 105.Anderson M T, Greenwood K B, Taylor G A, Poeppelmeier K. B-cation arrangements in double perovskites. Progress in Solid State Chemistry, 1993, 22(3): 197–233CrossRefGoogle Scholar
- 106.Serrate D, De Teresa J M, Algarabel P A, Marquina C, Blasco J, Ibarra M R, Galibert J. Magnetoelastic coupling in Sr2(Fe1−xCrx) ReO6 double perovskites. Journal of Physics Condensed Matter, 2007, 19(43): 436226CrossRefGoogle Scholar
- 107.Suntsov A Y, Leonidov I A, Patrakeev M V, Kozhevnikov V L. Defect formation in double perovskites PrBaCo2−xCuxO5+δ at elevated temperatures. Solid State Ionics, 2015, 274: 17–23CrossRefGoogle Scholar
- 108.Niu B, Jin F, Yang X, Feng T, He T. Resisting coking and sulfur poisoning of double perovskite. 2018, 43(6): 3280–3290Google Scholar
- 109.Kim J H, Manthiram A. Layered NdBaCo2−xNixO5+δ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2009, 54(28): 7551–7557CrossRefGoogle Scholar
- 110.Blasse G. New compounds with perovskite-like structures. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993–1003CrossRefGoogle Scholar
- 111.Battle P D, Jones C W. The crystal and magnetic structures of Sr2LuRuO6,Ba2YRuO6, and Ba2LuRuO6. Journal of Solid State Chemistry, 1989, 78(1): 108–116CrossRefGoogle Scholar
- 112.Azad A K, Ivanov S A, Eriksson S G, Eriksen J, Rundlöf H, Mathieu R, Svedlindh P. Synthesis, crystal structure, and magnetic characterization of the double perovskite Ba2MnWO6. Materials Research Bulletin, 2001, 36(12): 2215–2228CrossRefGoogle Scholar
- 113.Azad A K, Eriksson S G, Mellergård A, Ivanov S A, Eriksen J, Rundlöf H. A study on the nuclear and magnetic structure of the double perovskites A 2FeWO6 (A = Sr, Ba) by neutron powder diffraction and reverse Monte Carlo modeling. Materials Research Bulletin, 2002, 37(11): 1797–1813CrossRefGoogle Scholar
- 114.Anderson M T, Poeppelmeier K R. La2CuSnO6: a new perovskite-related compound with an unusual arrangement of B cations. Chemistry of Materials, 1991, 3(3): 476–482CrossRefGoogle Scholar
- 115.Glazer A M. The classification of tilted octahedra in perovskites. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1972, 28(11): 3384–3392CrossRefGoogle Scholar
- 116.Blasse G. New compounds with perovskite-like structures. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993–1003CrossRefGoogle Scholar
- 117.Prellier W, Smolyaninova V, Biswas A, Galley C, Greene R L, Ramesha K, Gopalakrishnan J. Properties of the ferrimagnetic double perovskites A2FeReO6 (A = Ba and Ca). Journal of Physics Condensed Matter, 2000, 12(6): 965–973CrossRefGoogle Scholar
- 118.Anderson M T, Poeppelmeier K R. Lanthanum copper tin oxide (La2CuSnO6): a new perovskite-related compound with an unusual arrangement of B cations. Chemistry of Materials, 1991, 3(3): 476–482CrossRefGoogle Scholar
- 119.Azad A K, Basheer F, Iskandar Petra P M, Ghosh A, Irvine J T S. Structure-property relationship in Mg-doped La0.75Sr0.25Mn0.5 Cr0.5O3 anode for solid oxide fuel cell. In: 5th Brunei International Conference on Engineering and Technology (BICET 2014), Bandar Seri Begawan, Brunei, 2014: 1115Google Scholar
- 120.Wang Y, Zhang H, Chen F, Xia C. Electrochemical characteristics of nano-structured PrBaCo2O5+x cathodes fabricated with ion impregnation process. Journal of Power Sources, 2012, 203: 34–41CrossRefGoogle Scholar
- 121.Ghosh A, Azad A K, Irvine J T S. Study of Ga doped LSCM as an anode for SOFC. ECS Transactions, 2011, 35(1): 1337–1343CrossRefGoogle Scholar
- 122.Shaikh S P S, Muchtar A, Somalu M R. A review on the selection of anode materials for solid-oxide fuel cells. Renewable & Sustainable Energy Reviews, 2015, 51: 1–8CrossRefGoogle Scholar
- 123.Xia C, Liu M. Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC-Ni anodes for low-temperature SOFCs. Solid State Ionics, 2002, 152–153: 423–430CrossRefGoogle Scholar
- 124.Brett D J L, Atkinson A, Brandon N P, Skinner S J. Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 2008, 37(8): 1568CrossRefGoogle Scholar
- 125.Park S, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265–267CrossRefGoogle Scholar
- 126.Gorte R J, Vohs J M. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. Journal of Catalysis, 2003, 216(1–2): 477–486CrossRefGoogle Scholar
- 127.Shri Prakash B, Senthil Kumar S, Aruna S T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renewable & Sustainable Energy Reviews, 2014, 36: 149–179CrossRefGoogle Scholar
- 128.Huan Y, Li Y, Yin B, Ding D, Wei T. High conductive and long-term phase stable anode materials for SOFCs: A 2FeMoO6 (A = Ca, Sr, Ba). Journal of Power Sources, 2017, 359: 384–390CrossRefGoogle Scholar
- 129.Zheng K, Świerczek K, Zając W, Klimkowicz A. Rock salt ordered-type double perovskite anode materials for solid oxide fuel cells. Solid State Ionics, 2014, 257: 9–16CrossRefGoogle Scholar
- 130.Rath M K, Lee K T. Superior electrochemical performance of non-precious Co-Ni-Mo alloy catalyst-impregnated Sr2FeMoO6−δ as an electrode material for symmetric solid oxide fuel cells. Electro-chimica Acta, 2016, 212: 678–685CrossRefGoogle Scholar
- 131.dos Santos-Gómez L, León-Reina L, Porras-Vázquez J M, Losilla E R, Marrero-López D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, 239: 1–7CrossRefGoogle Scholar
- 132.Kumar P, Presto S, Sinha A S K, Varma S, Viviani M, Singh P. Effect of samarium (Sm3+) doping on structure and electrical conductivity of double perovskite Sr2NiMoO6 as anode material for SOFC. Journal of Alloys and Compounds, 2017, 725: 1123–1129CrossRefGoogle Scholar
- 133.Ding H, Tao Z, Liu S, Yang Y. A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6−δ double perovskite as anode material. Journal of Power Sources, 2016, 327: 573–579CrossRefGoogle Scholar
- 134.Sun Y F, Zhang Y Q, Hua B, Behnamian Y, Li J, Cui S H, Li J H, Luo J L. Molybdenum doped Pr0.5Ba0.5MnO3−δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material. Journal of Power Sources, 2016, 301: 237–241CrossRefGoogle Scholar
- 135.Tomkiewicz A C, Tamimi M A, Huq A, McIntosh S. Structural analysis of PrBaMn2O5+δ under SOFC anode conditions by in-situ neutron powder diffraction. Journal of Power Sources, 2016, 330: 240–245CrossRefGoogle Scholar
- 136.Xu L, Yin Y M, Zhou N, Wang Z, Ma Z F. Sulfur tolerant redox stable layered perovskite SrLaFeO4−δ as anode for solid oxide fuel cells. Electrochemistry Communications, 2017, 76: 51–54CrossRefGoogle Scholar
- 137.Wang F Y, Zhong G B, Luo S, Xia L, Fang L H, Song X, Hao X, Yan G. Porous Sr2MgMo1 xVxO6 d ceramics as anode materials for SOFCs using biogas fuel. Catalysis Communications, 2015, 67: 108–111CrossRefGoogle Scholar
- 138.He B, Wang Z, Zhao L, Pan X, Wu X, Xia C. Ti-doped molybdenum-based perovskites as anodes for solid oxide fuel cells. Journal of Power Sources, 2013, 241: 627–633CrossRefGoogle Scholar
- 139.Escudero M J, Gómez deParada I, Fuerte A, Daza L. Study of Sr2Mg(Mo0.8Nb0.2)O6−δ as anode material for solid oxide fuel cells using hydrocarbons as fuel. Journal of Power Sources, 2013, 243: 654–660CrossRefGoogle Scholar
- 140.Zhang Q, Wei T, Huang Y H. Electrochemical performance of double-perovskite Ba2MMoO6 (M = Fe, Co, Mn, Ni) anode materials for solid oxide fuel cells. Journal of Power Sources, 2012, 198: 59–65CrossRefGoogle Scholar
- 141.Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Martín-Sedeño M C, Núñez P. High temperature phase transition in SOFC anodes based on Sr2MgMoO6−δ. Journal of Solid State Chemistry, 2009, 182(5): 1027–1034CrossRefGoogle Scholar
- 142.Han Z, Wang Y, Yang Y, Li L, Yang Z, Han M. High-performance SOFCs with impregnated Sr2Fe1.5Mo0.5O6−δ anodes toward sulfur resistance. Journal of Alloys and Compounds, 2017, 703: 258–263CrossRefGoogle Scholar
- 143.Gansor P, Xu C, Sabolsky K, Zondlo J W, Sabolsky E M. Phosphine impurity tolerance of Sr2MgMoO6−δ composite SOFC anodes. Journal of Power Sources, 2012, 198: 7–13CrossRefGoogle Scholar
- 144.Li H, Zhao Y, Wang Y, Li Y. Sr2Fe2−xMoxO6−δ perovskite as an anode in a solid oxide fuel cell: effect of the substitution ratio. Catalysis Today, 2016, 259: 417–422CrossRefGoogle Scholar
- 145.Zhang L, Zhou Q, He Q, He T. Double-perovskites A 2FeMoO6−δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(19): 6356–6366CrossRefGoogle Scholar
- 146.Jiang L, Liang G, Han J, Huang Y. Effects of Sr-site deficiency on structure and electrochemical performance in Sr2MgMoO6 for solid-oxide fuel cell. Journal of Power Sources, 2014, 270: 441–448CrossRefGoogle Scholar
- 147.Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Gabás M, Núñez P, Aranda M A G, Ramos-Barrado J R. Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6−δ as SOFC anode. Solid State Ionics, 2010, 180 (40): 1672–1682CrossRefGoogle Scholar
- 148.Howell T G, Kuhnell C P, Reitz T L, Sukeshini A M, Singh R N. {A 2MgMoO6}(A = Sr,Ba) for use as sulfur tolerant anodes. Journal of Power Sources, 2013, 231: 279–284CrossRefGoogle Scholar
- 149.Zhang P, Huang Y H, Cheng J G, Mao Z Q, Goodenough J B. Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels. Journal of Power Sources, 2011, 196(4): 1738–1743CrossRefGoogle Scholar
- 150.Vasala S, Lehtimäki M, Haw S C, Chen J M, Liu R S, Yamauchi H, Karppinen M. Isovalent and aliovalent substitution effects on redox chemistry of Sr2MgMoO6−δ SOFC-anode material. Solid State Ionics, 2010, 181(15–16): 754–759CrossRefGoogle Scholar
- 151.Liu Q, Bugaris D E, Xiao G, Chmara M, Ma S, zur Loye H C, Amiridis M D, Chen F. Sr2Fe1.5Mo0.5O6−δ as a regenerative anode for solid oxide fuel cells. Journal of Power Sources, 2011, 196(22): 9148–9153CrossRefGoogle Scholar
- 152.Karim A H, Park K Y, Lee T H, Muhammed Ali S A, Hossain S, Absah H Q H H, Park J Y, Azad A K. Synthesis, structure and electrochemical performance of double perovskite oxide Sr2Fe1−x TixNbO6−δas SOFC electrode. Journal of Alloys and Compounds, 2017, 724: 666–673CrossRefGoogle Scholar
- 153.Martínez-Coronado R, Aguadero A, Alonso J A, Fernández-Díaz M T. Reversible oxygen removal and uptake in the La2ZnMnO6 double perovskite: performance in symmetrical SOFC cells. Solid State Sciences, 2013, 18: 64–70CrossRefGoogle Scholar
- 154.Li W, Cheng Y, Zhou Q, Wei T, Li Z, Yan H, Wang Z, Han X. Evaluation of double perovskite Sr2FeTiO6−δ as potential cathode or anode materials for intermediate-temperature solid oxide fuel cells. Ceramics International, 2015, 41(9): 12393–12400CrossRefGoogle Scholar
- 155.Ding H, Sullivan N P, Ricote S. Double perovskite Ba2FeMoO6−δ as fuel electrode for protonic-ceramic membranes. Solid State Ionics, 2017, 306: 97–103CrossRefGoogle Scholar
- 156.Zheng K, Świerczek K, Bratek J, Klimkowicz A. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ionics, 2014, 262: 354–358CrossRefGoogle Scholar
- 157.Song Y, Zhong Q, Tan W, Pan C. Effect of cobalt-substitution Sr2Fe1.5−xCoxMo0.5O6−δ for intermediate temperature symmetrical solid oxide fuel cells fed with H2-H2S. Electrochimica Acta, 2014, 139: 13–20CrossRefGoogle Scholar
- 158.Tarancón A, Marrero-López D, Peña-Martínez J, Ruizmorales J, Nunez P. Effect of phase transition on high-temperature electrical properties of GdBaCo2O5+x layered perovskite. Solid State Ionics, 2008, 179(17–18): 611–618CrossRefGoogle Scholar
- 159.Song Y, Zhong Q, Wang D, Xu Y, Tan W. Interaction between electrode materials Sr2FeCo0.5Mo0.5O6−δ and hydrogen sulfide in symmetrical solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42(34): 22266–22272CrossRefGoogle Scholar
- 160.Wright J H, Virkar A V, Liu Q, Chen F. Electrical characterization and water sensitivity of Sr2Fe1.5Mo0.5O6−δ as a possible solid oxide fuel cell electrode. Journal of Power Sources, 2013, 237: 13–18CrossRefGoogle Scholar
- 161.Kim J H, Cassidy M, Irvine J T S, Bae J. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5−δ (Ln = Pr, Sm, and Gd) as cathode materials for IT-SOFC. Journal of the Electrochemical Society, 2009, 156(6): B682–B689CrossRefGoogle Scholar
- 162.Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000CrossRefGoogle Scholar
- 163.Jiang S P. Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells. Journal of Power Sources, 2003, 124(2): 390–402CrossRefGoogle Scholar
- 164.Carter S, Selcuk A, Chater R J, Kajda J, Kilner J A, Steele B C H. Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ionics, 1992, 53–56: 597–605CrossRefGoogle Scholar
- 165.Kim G, Wang S, Jacobson A J, Reimus L, Brodersen P, Mims C A. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. Journal of Materials Chemistry, 2007, 17(24): 2500CrossRefGoogle Scholar
- 166.Choi S, Kucharczyk C J, Liang Y, Zhang X, Takeuchi I, Ji H I, Haile S M. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 2018, 3 (3): 202–210CrossRefGoogle Scholar
- 167.Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 2010, 14(7): 1125–1144CrossRefGoogle Scholar
- 168.Lü S, Meng X, Ji Y, Fu C, Sun C, Zhao H. Electrochemical performances of NdBa0.5Sr0.5Co2O5+x as potential cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2010, 195(24): 8094–8096CrossRefGoogle Scholar
- 169.Jiang X, Wang J, Jia G, Qie Z, Shi Y, Idrees A, Zhang Q, Jiang L. Characterization of PrBa0.92CoCuO6 δ as a potential cathode material of intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2017, 42(9): 6281–6289CrossRefGoogle Scholar
- 170.Tomkiewicz A C, Meloni M, McIntosh S. On the link between bulk structure and surface activity of double perovskite based SOFC cathodes. Solid State Ionics, 2014, 260: 55–59CrossRefGoogle Scholar
- 171.Li H, Sun L P, Li Q, Xia T, Zhao H, Huo L H, Bassat J M, Rougier A, Fourcade S, Grenier J C. Electrochemical performance of double perovskite Pr2NiMnO6 as a potential IT-SOFC cathode. International Journal of Hydrogen Energy, 2015, 40(37): 12761–12769CrossRefGoogle Scholar
- 172.Mao X, Wang W, Ma G. A novel cobalt-free double-perovskite NdBaFe1.9Nb0.1O5−δ cathode material for proton-conducting IT-SOFC. Ceramics International, 2015, 41(8): 10276–10280CrossRefGoogle Scholar
- 173.Jin F J, Liu J, Niu B, Ta L, Li R, Wang Y, Yang X, He T. Evaluation and performance optimization of double-perovskite LaSrCoTiO5+δ cathode for intermediate-temperature solid-oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(46): 21439–21449CrossRefGoogle Scholar
- 174.Fu D, Jin F, He T. A-site calcium-doped Pr1 xCaxBaCo2O5+δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313: 134–141CrossRefGoogle Scholar
- 175.Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G. Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: a briefreview. Journal of Power Sources, 2015, 298: 46–67CrossRefGoogle Scholar
- 176.Mao X, Yu T, Ma G. Performance ofcobalt-free double-perovskite NdBaFe2 xMnxO5+δ cathode materials for proton-conducting IT-SOFC. Journal of Alloys and Compounds, 2015, 637: 286–290CrossRefGoogle Scholar
- 177.Pang S, Wang W, Chen T, Wang Y, Xu K, Shen X, Xi X, Fan J. The effect of potassium on the properties of PrBa1−xCo2O5+δ (x = 0.00-0.10) cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(31): 13705–13714CrossRefGoogle Scholar
- 178.Xia L N, He Z P, Huang X W, Yu Y. Synthesis and properties of SmBaCo2 xNixO5+δ perovskite oxide for IT-SOFC cathodes. Ceramics International, 2016, 42(1): 1272–1280CrossRefGoogle Scholar
- 179.Jin F, Xu H, Long W, Shen Y, He T. Characterization and evaluation of double perovskites LnBaCoFeO5+δ (Ln = Pr and Nd) as intermediate-temperature solid oxide fuel cell cathodes. Journal of Power Sources, 2013, 243: 10–18CrossRefGoogle Scholar
- 180.Seymour I D, Tarancón A, Chroneos A, Parfitt D, Kilner J A, Grimes R W. Anisotropic oxygen diffusion in PrBaCo2O5.5 double perovskites. Solid State Ionics, 2012, 216: 41–43CrossRefGoogle Scholar
- 181.Suntsov A Y, Leonidov I A, Patrakeev M V, Kozhevnikov V L. Defect formation in double perovskites PrBaCo2 xCuxO5+δ at elevated temperatures. Solid State Ionics, 2015, 274: 17–23CrossRefGoogle Scholar
- 182.Saccoccio M, Jiang C, Gao Y, Chen D, Ciucci F. Nb-substituted PrBaCo2O5+δ as a cathode for solid oxide fuel cells: a systematic study of structural, electrical, and electrochemical properties. International Journal of Hydrogen Energy, 2017, 42(30): 19204–19215CrossRefGoogle Scholar
- 183.Jin F, Li L, He T. NdBaCo2/3Fe2/3Cu2/3O5+δ double perovskite as a novel cathode material for CeO2- and LaGaO3-based solid oxide fuel cells. Journal of Power Sources, 2015, 273: 591–599CrossRefGoogle Scholar
- 184.Li L, Jin F, Shen Y, He T. Cobalt-free double perovskite cathode GdBaFeNiO5+δ and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2015, 182: 682–692CrossRefGoogle Scholar
- 185.Li S, Xia T, Li Q, Sun L, Huo L, Zhao H. A-site Ba-deficiency layered perovskite EuBa1 xCo2O6 δ cathodes for intermediate-temperature solid oxide fuel cells: electrochemical properties and oxygen reduction reaction kinetics. International Journal of Hydrogen Energy, 2017, 42(38): 24412–24425CrossRefGoogle Scholar
- 186.Jin F, Shen Y, Wang R, He T. Double-perovskite PrBaCo2/3 Fe2/3Cu2/3O5+δ as cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 234: 244–251CrossRefGoogle Scholar
- 187.Meng F, Xia T, Wang J, Shi Z, Zhao H. Praseodymium-deficiency Pr0.94BaCo2O6 δ double perovskite: a promising high performance cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 293: 741–750CrossRefGoogle Scholar
- 188.Jin F, Liu J, Shen Y, He T. Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+δSm0.2-Ce0.8O1.9 (Ln = Pr and Nd) composite cathodes for IT-SOFCs. Journal of Alloys and Compounds, 2016, 685: 483–491CrossRefGoogle Scholar
- 189.Xue J, Shen Y, He T. Double-perovskites YBaCo2 xFexO5+δ cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196(8): 3729–3735CrossRefGoogle Scholar
- 190.Zhou Q, He T, Ji Y. SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2008, 185(2): 754–758CrossRefGoogle Scholar
- 191.Kong X, Liu G, Yi Z, Ding X. NdBaCu2O5+δ and NdBa0.5Sr0.5 Cu2O5+δ layered perovskite oxides as cathode materials for IT-SOFCs. International Journal of Hydrogen Energy, 2015, 40(46): 16477–16483CrossRefGoogle Scholar
- 192.Wei B, Chen K, Wang C C, Lü Z, Jiang S P. Performance degradation of SmBaCo2O5+δ cathode induced by chromium deposition for solid oxide fuel cells. Electrochimica Acta, 2015, 174: 327–331CrossRefGoogle Scholar
- 193.Lü S, Yu B, Meng X, Zhang Y, Ji Y, Fu C, Yang L, Li X, Sui Y, Yang J. Performance of double-perovskite YBa0.5Sr0.5Co1.4Cu0.6 O5+δ as cathode material for intermediate-temperature solid oxide fuel cells. Ceramics International, 2014, 40(9, Part B): 14919–14925CrossRefGoogle Scholar
- 194.Kuroda C, Zheng K, Swierczek K. Characterization of novel GdBa0.5Sr0.5Co2 xFexO5+δperovskites for application in IT-SOFC cells. International Journal of Hydrogen Energy, 2013, 38(2): 1027–1038CrossRefGoogle Scholar
- 195.Subardi A, Chen C C, Cheng M H, Chang W K, Fu Y P. Electrical, thermal and electrochemical properties of SmBa1−xSrxCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2016, 204: 118–127CrossRefGoogle Scholar
- 196.Yu L, Chen Y, Gu Q, Tian D, Lu X, Meng G, Lin B. Layered perovskite oxide Y0.8Ca0.2BaCoFeO5+δ as a novel cathode material for intermediate-temperature solid oxide fuel cells. Journal of Rare Earths, 2015, 33(5): 519–523 (in Chinese)CrossRefGoogle Scholar
- 197.Donazzi A, Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G, Sora I N. Evaluation of Ba deficient NdBaCo2O5+δ oxide as cathode material for IT-SOFC. Electrochimica Acta, 2015, 182: 573–587CrossRefGoogle Scholar
- 198.Che X, Shen Y, Li H, He T. Assessment of LnBaCo16Ni0.4O5+δ (Ln = Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 222: 288–293CrossRefGoogle Scholar
- 199.Pérez-Flores J C, Gómez-Pérez A, Yuste M, Canales-Vázquez J, Climent-Pascual E, Ritter C, Azcondo M T, Amador U, García-Alvarado F. Characterization of La2 xSrxCoTiO6 (0.6⩽x⩽1.0) series as new cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(10): 5440–5450CrossRefGoogle Scholar
- 200.Wang W, Pang S, Su Y, Shen X, Wang Y, Xu K, Xi X, Xiang J. The effect of calcium on the properties of SmBa1−xCaxCoCuO5+δ as a cathode material for intermediate-temperature solid oxide fuel cells. Journal of the European Ceramic Society, 2017, 37(4): 1557–1562CrossRefGoogle Scholar
- 201.Cascos V, Troncoso L, Alonso J A. New families of Mn+-doped SrCo1 xMxO3 δ perovskites performing as cathodes in solid-oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40(34): 11333–11341CrossRefGoogle Scholar
- 202.Zhu Z, Tao Z, Bi L, Liu W. Investigation of SmBaCuCoO5+δ double-perovskite as cathode for proton-conducting solid oxide fuel cells. Materials Research Bulletin, 2010, 45(11): 1771–1774CrossRefGoogle Scholar
- 203.Pang S L, Jiang X N, Li X N, Xu H X, Jiang L, Xu Q L, Shi Y C, Zhang Q Y. Structure and properties of layered-perovskite LaBa1 x Co2O5+δ (x = 0–0.15) as intermediate-temperature cathode material. Journal of Power Sources, 2013, 240: 54–59CrossRefGoogle Scholar
- 204.Dai N, Wang Z, Jiang T, Feng J, Sun W, Qiao J, Rooney D, Sun K. A new family of barium-doped Sr2Fe1.5Mo0.5O5+δ perovskites for application in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 268: 176–182CrossRefGoogle Scholar
- 205.Tsvetkova N S, Zuev A Y, Tsvetkov D S. Investigation of GdBaCo2 xFexO6+δ (x = 0, 0.2)-Ce0.8Sm0.2O2 composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2013, 243: 403–408CrossRefGoogle Scholar
- 206.Zhou Q, Wei W C J, Guo Y, Jia D. LaSrMnCoO5+δ as cathode for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications, 2012, 19: 36–38CrossRefGoogle Scholar
- 207.Jiang X, Xu Q, Shi Y, Li X, Zhou W, Xu H, Zhang Q. Synthesis and properties of Sm3+-deficient Sm1−xBaCo2O5+δ perovskite oxides as cathode materials. International Journal of Hydrogen Energy, 2014, 39(21): 10817–10823CrossRefGoogle Scholar
- 208.Zhen S, Sun W, Tang G, Rooney D, Sun K, Ma X. Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6 δ-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes. International Journal of Hydrogen Energy, 2016, 41(22): 9538–9546CrossRefGoogle Scholar
- 209.Zhang K, Ge L, Ran R, Shao Z, Liu S. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56(17): 4876–4889CrossRefGoogle Scholar
- 210.Gómez-Pérez A, Yuste M, Pérez-Flores J C, Ritter C, Azcondo M T, Canales-Vázquez J, Gálvez-Sánchez M, Boulahya K, García-Alvarado F, Amador U. The role of the Co2+/Co3+ redox-pair in the properties of La2 xSrxCoTiO6 (0⩽x⩽0.5) perovskites as components for solid oxide fuel cells. Journal of Power Sources, 2013, 227: 309–317CrossRefGoogle Scholar
- 211.Wang B, Long G, Ji Y, Pang M, Meng X. Layered perovskite PrBa0.5Sr0.5CoCuO5+δ as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2014, 606: 92–96CrossRefGoogle Scholar
- 212.Yi K, Sun L, Li Q, Xia T, Huo L, Zhao H, Li J, Lü Z, Bassat J M, Rougier A, Fourcade S, Grenier J C. Effect of Nd-deficiency on electrochemical properties of NdBaCo2O6−δ cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(24): 10228CrossRefGoogle Scholar
- 213.Zhou Q, Cheng Y, Li W, Yang X, Liu J, An D, Tong X, Zhong B, Wang W. Investigation of cobalt-free perovskite Sr2FeTi0.75 Mo0.25O6 δ as new cathode for solid oxide fuel cells. Materials Research Bulletin, 2016, 74: 129–133CrossRefGoogle Scholar
- 214.Xue J, Shen Y, He T. Performance of double-proveskite YBa0.5Sr0.5Co2O5+δas cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36(11): 6894–6898CrossRefGoogle Scholar
- 215.Wang Y, Zhao X, Lü S, Meng X, Zhang Y, Yu B, Li X, Sui Y, Yang J, Fu C, Ji Y. Synthesis and characterization of SmSrCo2−x MnxO5+δ (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) cathode materials for intermediate-temperature solid-oxide fuel cells. Ceramics International, 2014, 40(7): 11343–11350CrossRefGoogle Scholar
- 216.Lü S, Long G, Meng X, Ji Y, Lü B, Zhao H. PrBa0.5Sr0.5Co2O5+δ as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37(7): 5914–5919CrossRefGoogle Scholar
- 217.Lee S J, Kim D S, Jo S H, Muralidharan P, Kim D K. Electrochemical properties of GdBaCo2/3Fe2/3Cu2/3O5+-CGO composite cathodes for solid oxide fuel cell. Ceramics International, 2012, 38(Sup. 1): S493–496CrossRefGoogle Scholar
- 218.Li X, Jiang X, Xu H, Xu Q, Jiang L, Shi Y, Zhang Q. Scandium-doped PrBaCo2−xScxO6−δ oxides as cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38(27): 12035–12042CrossRefGoogle Scholar
- 219.Choi S, Shin J, Kim G. The electrochemical and thermodynamic characterization of PrBaCo2−xFexO5+δ (x = 0, 0.5, 1) infiltrated into yttria-stabilized zirconia scaffold as cathodes for solid oxide fuel cells. Journal of Power Sources, 2012, 201: 10–17CrossRefGoogle Scholar
- 220.Zhu C, Liu X, Yi C, Yan D, Su W. Electrochemical performance of PrBaCo2O5+δ layered perovskite as an intermediate-temperature solid oxide fuel cell cathode. Journal of Power Sources, 2008, 185 (1): 193–196CrossRefGoogle Scholar
- 221.Tarancón A, Morata A, Dezanneau G, Skinner S J, Kilner J A, Estradé S, Hernández-Ramírez F, Peiró F, Morante J R. GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode. Journal of Power Sources, 2007, 174 (1): 255–263CrossRefGoogle Scholar
- 222.Ding H, Xue X, Liu X, Meng G. High performance layered SmBa0.5Sr0.5Co2O5+δ cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009, 194(2): 815–817CrossRefGoogle Scholar
- 223.Hou M, Sun W, Li P, Feng J, Yang G, Qiao J, Wang Z, Rooney D, Feng J, Sun K. Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6−δ for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 272: 759–765CrossRefGoogle Scholar
- 224.Li X, Jiang X, Shi Y, Zhou W, Xu Q, Xu H, Zhang Q. One-step synthesized nano-composite cathode material of Pr0.83 BaCo1.33Sc0.5O6−δ-0.17PrCoO3 for intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2014, 39(27): 15039–15045CrossRefGoogle Scholar
- 225.Zou J, Park J, Kwak B, Yoon H, Chung J. Effect of Fe doping on PrBaCo2O5+δ as cathode for intermediate-temperature solid oxide fuel cells. Solid State Ionics, 2012, 206: 112–119CrossRefGoogle Scholar
- 226.Zhang Y, Yu B, Lu S, Meng X, Zhao X, Ji Y, Wang Y, Fu C, Liu X, Li X, Sui Y, Lang J, Yang J. Effect of Cu doping on YBaCo2O5+δ as cathode for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2014, 134: 107–115CrossRefGoogle Scholar
- 227.Lü S, Long G, Ji Y, Meng X, Zhao H, Sun C. SmBaCoCuO5+x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2011, 509(6): 2824–2828CrossRefGoogle Scholar
- 228.Azad A K, Kim J H, Irvine J T S. Structure-property relationship in layered perovskite cathode LnBa0.5Sr0.5Co2O5+δ (Ln = Pr, Nd) for solid oxide fuel cells. Journal of Power Sources, 2011, 196(17): 7333–7337CrossRefGoogle Scholar
- 229.Hu Y, Bogicevic C, Bouffanais Y, Giot M, Hernandez O, Dezanneau G. Synthesis, physical-chemical characterization and electrochemical performance of GdBaCo2 xNixO5+δ(x = 0−0.8) as cathode materials for IT-SOFC application. Journal of Power Sources, 2013, 242: 50–56CrossRefGoogle Scholar
- 230.Xia T, Lin N, Zhao H, Huo L, Wang J, Grenier J C. Co-doped Sr2FeNbO6 as cathode materials for intermediate-temperature s olid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 291–296CrossRefGoogle Scholar
- 231.Subardi A, Cheng M H, Fu Y P. Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+δ cathode for intermediate solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(35): 20783–20790CrossRefGoogle Scholar
- 232.Mitchell R H. Perovskites: Modern and Ancient. Ontario, Canada: Almaz Press, 2002Google Scholar
- 233.Horita T, Kishimoto H, Yamaji K, Brito M E, Xiong Y, Yokokawa H, Hori Y, Miyachi I. Effects of impurities on the degradation and long-term stability for solid oxide fuel cells. Journal of Power Sources, 2009, 193(1): 194–198CrossRefGoogle Scholar
- 234.Tao S W, Irvine J T S. A redox-stable efficient anode for solidoxide fuel cells. Nature Materials, 2003, 2(5): 320–323CrossRefGoogle Scholar
- 235.Fu Q X, Tietz F. Ceramic-based anode materials for improved redox cycling of solid oxide fuel cells. Fuel Cells (Weinheim), 2008, 8(5): 283–293CrossRefGoogle Scholar
- 236.Azad A K, Hakem A, Iskandar Petra P M. Titanium doped LSCM anode for hydrocarbon fuelled SOFCs. AIP Conference Proceedings, 2015, 070069Google Scholar
- 237.Tao S W, Canales-Vazquez J, Irvine J T S. Structural and electrical properties of the perovskite oxide Sr2FeNbO6. Chemistry of Materials, 2004, 16(11): 2309–2316CrossRefGoogle Scholar
- 238.Téllez Lozano H, Druce J, Cooper S J, Kilner J A. Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors? Science and Technology of Advanced Materials, 2017, 18(1): 977–986CrossRefGoogle Scholar
- 239.Peña-Martínez J, Marrero-López D, Ruiz-Morales J C, Savaniu C, Núñez P, Irvine J T S. Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3−δ at lanthanum gallate electrolytes. Chemistry of Materials, 2006, 18 (4): 1001–1006CrossRefGoogle Scholar
- 240.Danilovic N, Luo J L, Chuang K T, Sanger A R. Ce0.9Sr0.1VOx (x = 3, 4) as anode materials for H2S-containing {CH4} fueled solid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 247–257CrossRefGoogle Scholar
- 241.Azad A K, Irvine J T S. Characterization of YSr2Fe3O8−δ as electrode materials for SOFC. Solid State Ionics, 2011, 192(1): 225–228CrossRefGoogle Scholar
- 242.Huang Y H, Liang G, Croft M, Lehtimäki M, Karppinen M, Goodenough J B. Double-perovskite anode materials Sr2MMoO6 (M= Co, Ni) for solid oxide fuel cells. Chemistry of Materials, 2009, 21(11): 2319–2326CrossRefGoogle Scholar
- 243.Ralph J M, Schoeler A C, Krumpelt M. Materials for lower temperature solid oxide fuel cells. Electrochemical Technology, 2001, 6(5): 1161–1172Google Scholar
- 244.Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004, 104(10): 4791–4844CrossRefGoogle Scholar
- 245.Tao S W, Irvine J T S. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3−δ, a redox-stable, efficient perovskite anode for SOFCs. Journal of the Electrochemical Society, 2004, 151(2): A252CrossRefGoogle Scholar
- 246.Tao S W, Irvine J T S. Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3−δ in relation to its potential as a solid oxide fuel cell anode material. Chemistry of Materials, 2004, 16 (21): 4116–4121CrossRefGoogle Scholar
- 247.Ruiz-Morales J C, Canales-Vázquez J, Savaniu C, Marrero-López D, Zhou W, Irvine J T S. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature, 2006, 439 (7076): 568–571CrossRefGoogle Scholar
- 248.Zhu W Z, Deevi S C. A review on the status of anode materials for solid oxide fuel cells. Materials Science and Engineering A, 2003, 362(1–2): 228–239CrossRefGoogle Scholar
- 249.Fagg D P, Kharton V V, Kovalevsky A V, Viskup A P, Naumovich E N, Frade J R. The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential anode materials. Journal of the European Ceramic Society, 2001, 21(10–11): 1831–1835CrossRefGoogle Scholar
- 250.Touleva A, Yufit V, Simons S, Maskell W C, Brett D J L. A review of liquid metal anode solid oxide fuel cells. Journal of Electrochemical Science and Engineering, 2013, 3(3): 91–105Google Scholar
- 251.Wang X, Yu B, Zhang W, Chen J, Luo X, Stephan K. Microstructural modification of the anode/electrolyte interface of SOEC for hydrogen production. International Journal of Hydrogen Energy, 2012, 37(17): 12833–12838CrossRefGoogle Scholar
- 252.dos Santos-Gómez L, León-Reina L, Porras-Vázquez J M, Losilla E R, Marrero-López D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, 239: 1–7CrossRefGoogle Scholar
- 253.Saines P J, Kennedy B J. Phase segregation in mixed Nb-Sb double perovskites Ba2LnNb1−xSbxO6−δ. Journal of Solid State Chemistry, 2008, 181(2): 298–305CrossRefGoogle Scholar
- 254.Tonus F, Bahout M, Dorcet V, Sharma R K, Djurado E, Paofai S, Smith R I, Skinner S J. A-site order-disorder in the NdBaMn2O5+δ SOFC electrode material monitored in situ by neutron diffraction under hydrogen flow. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 11078–11085CrossRefGoogle Scholar
- 255.Deng Z Q, Smit J P, Niu H J, Evans G, Li M R, Xu Z L, Claridge J B, Rosseinsky M J. B cation ordered double perovskite Ba2CoMo0.5Nb0.5O6−δ as a potential SOFC cathode. Chemistry of Materials, 2009, 21(21): 5154–5162CrossRefGoogle Scholar
- 256.Afroze S, Abdalla A M, Radenahmad N, et al. Synthesis, structural and thermal properties of double perovskite NdSrMn2O6 as potential anode materials for solid oxide fuel cells. In: 7th Brunei International Conference on Engineering and Technology 2017 (BICET 2017), Antalya, Turkey, 2018Google Scholar
- 257.Falcón H, Barbero J A, Araujo G, Casais M T, Martínez-Lope M J, Alonso J A, Fierro J L G. Double perovskite oxides A 2FeMoO6−δ (A = Ca, Sr and Ba) as catalysts for methane combustion. Applied Catalysis B: Environmental, 2004, 53(1): 37–45CrossRefGoogle Scholar
- 258.Philipp B, Majewski P, Alff L, Erb A, Gross R, Graf T, Brandt M S, Simon J, Walther T, Mader W, Topwal D, Sarma D D. Structural and doping effects in the half-metallic double perovskite A 2CrWO6 (A = Sr, Ba, and Ca). Physical Review B: Condensed Matter and Materials Physics, 2003, 68(14): 144431CrossRefGoogle Scholar
- 259.Karim A H, Park K Y, Lee T H, Muhammed Ali S A, Hossain S, Absah HQHH, Park J Y, Azad A K. Synthesis, structure and electrochemical performance of double perovskite oxide Sr2Fe1 xTixNbO6 δ as SOFC electrode. Journal of Alloys and Compounds, 2017, 724: 666–673CrossRefGoogle Scholar
- 260.Zhang L, He T. Performance of double-perovskite Sr2−x SmxMgMoO6−δ as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196(20): 8352–8359CrossRefGoogle Scholar
- 261.Zhang L L, Zhou Q J, He Q, He T. Double-perovskites A 2FeMoO6−δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(19): 6356–6366CrossRefGoogle Scholar
- 262.Pickett W E. Spin-density-functional-based search for half-metallic antiferromagnets. Physical Review. B, 1998, 57(17): 10613–10619CrossRefGoogle Scholar