Promoting Si-graphite composite anodes with SWCNT additives for half and NCM811 full lithium ion batteries and assessment criteria from an industrial perspective

  • Jingning ShanEmail author
  • Xiaofang Yang
  • Chao Yan
  • Lin Chen
  • Fang Zhao
  • Yiguang JuEmail author
Research Article


Single wall carbon nanotube (SWCNT) additives were formulated into µm-Si-graphite composite electrodes and tested in both half cells and full cells with high nickel cathodes. The critical role of small amount of SWCNT addition (0.2 wt%) was found for significantly improving delithiation capacity, first cycle coulombic efficiency (FCE), and capacity retention. Particularly, Si (10 wt%)-graphite electrode exhibits 560 mAh/g delithiation capacity and 92% FCE at 0.2 C during the first charge-discharge cycle, and 91% capacity retention after 50 cycles (0.5 C) in a half cell. Scanning electron microscope (SEM) was used to illustrate the electrode morphology, compositions and promoting function of the SWCNT additives. In addition, full cells assembled with high nickel-NCM811 cathodes and µm-Si-graphite composite anodes were evaluated for the consistence between half and full cell performance, and the consideration for potential commercial application. Finally, criteria to assess Si-containing anodes are proposed and discussed from an industrial perspective.


lithium-ion battery Si anode Si-graphite composite single wall carbon nanotube (SWCNT) NCM811 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank HiT Nano Inc, ACEE and the grant from DOE SBIR Project. Yiguang Ju would like to thank the support from NSF CMMI-1449314 and the grant of electrification of transportation from the Andlinger Center for Energy and the Environment at Princeton University.


  1. 1.
    Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367CrossRefGoogle Scholar
  2. 2.
    Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928–935CrossRefGoogle Scholar
  3. 3.
    Ellis B L, Lee K T, Nazar L F. Positive electrode materials for Li-ion and Li-batteries. Chemistry of Materials, 2010, 22(3): 691–714CrossRefGoogle Scholar
  4. 4.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011, 4(9): 3243–3262CrossRefGoogle Scholar
  5. 5.
    Goodenough J B, Kim Y. Challenges for rechargeable Li batteries. Chemistry of Materials, 2010, 22(3): 587–603CrossRefGoogle Scholar
  6. 6.
    Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C. Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 2014, 257: 421–443CrossRefGoogle Scholar
  7. 7.
    Su X, Wu Q L, Li J C, Xiao X, Lott A, Lu W, Sheldon B W, Wu J. Silicon-based nanomaterials for lithium-ion batteries: a review. Advanced Energy Materials, 2014, 4(1): 1300882CrossRefGoogle Scholar
  8. 8.
    Jin Y, Zhu B, Lu Z D, Liu N, Zhu J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Advanced Energy Materials, 2017, 7(23): 1700715CrossRefGoogle Scholar
  9. 9.
    Qian J F, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G. High rate and stable cycling of lithium metal anode. Nature Communications, 2015, 6(1): 6362CrossRefGoogle Scholar
  10. 10.
    Zheng G Y, Lee S W, Liang Z, Lee H W, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotechnology, 2014, 9(8): 618–623CrossRefGoogle Scholar
  11. 11.
    Yang S F, Zavalij P Y, Whittingham M S. Anodes for lithium batteries: tin revisited. Electrochemistry Communications, 2003, 5(7): 587–590CrossRefGoogle Scholar
  12. 12.
    Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35CrossRefGoogle Scholar
  13. 13.
    Liu X H, Huang J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy & Environmental Science, 2011, 4(10): 3844–3860CrossRefGoogle Scholar
  14. 14.
    Li J, Dahn J R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. Journal of the Electrochemical Society, 2007, 154(3): A156–A161CrossRefGoogle Scholar
  15. 15.
    Szczech J R, Jin S. Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science, 2011, 4(1): 56–72CrossRefGoogle Scholar
  16. 16.
    Li Y Z, Yan K, Lee H W, Lu Z, Liu N, Cui Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nature Energy, 2016, 1(2): 15029CrossRefGoogle Scholar
  17. 17.
    Kim H S, Chung K Y, Cho L W. Effect of carbon-coated silicon/graphite composite anode on the electrochemical properties. Bulletin of the Korean Chemical Society, 2008, 29(10): 1965–1968CrossRefGoogle Scholar
  18. 18.
    Liu N, Wu H, McDowell M T, Yao Y, Wang C, Cui Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Letters, 2012, 12(6): 3315–3321CrossRefGoogle Scholar
  19. 19.
    Zong L Q, Jin Y, Liu C, Zhu B, Hu X, Lu Z, Zhu J. Precise perforation and scalable production of Si particles from low-grade sources for high-performance lithium ion battery anodes. Nano Letters, 2016, 16(11): 7210–7215CrossRefGoogle Scholar
  20. 20.
    Sohn M, Lee D G, Park H I, Park C, Choi J H, Kim H. Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering. Advanced Functional Materials, 2018, 28(23): 1800855CrossRefGoogle Scholar
  21. 21.
    Obrovac M N. Si-alloy negative electrodes for Li-ion batteries. Current Opinion in Electrochemstry, 2018, 9: 8–17CrossRefGoogle Scholar
  22. 22.
    Huang X D, Gan X F, Zhang F, Huang Q A, Yang J Z. Improved electrochemical performance of silicon nitride film by hydrogen incorporation for lithium-ion battery anode. Electrochimica Acta, 2018, 268: 241–247CrossRefGoogle Scholar
  23. 23.
    Lu W Q, Zhang L H, Qin Y, Jansen A. Calendar and cycle life of lithium-ion batteries containing silicon monoxide anode. Journal of the Electrochemical Society, 2018, 165(10): A2179–A2183CrossRefGoogle Scholar
  24. 24.
    Su M R, Wang Z, Guo H, Li X, Huang S, Xiao W, Gan L. Enhancement of the cyclability of a Si/Graphite@Graphene composite as anode for Lithium-ion batteries. Electrochimica Acta, 2014, 116: 230–236CrossRefGoogle Scholar
  25. 25.
    Gan L, Guo H, Wang Z, Li X, Peng W, Wang J, Huang S, Su M. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochimica Acta, 2013, 104: 117–123CrossRefGoogle Scholar
  26. 26.
    Yim C H, Courtel F M, Abu-Lebdeh Y. A high capacity silicongraphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(28): 8234–8243CrossRefGoogle Scholar
  27. 27.
    Khomenko V G, Barsukov V Z, Doninger J E, Barsukov I V. Lithium-ion batteries based on carbon-silicon-graphite composite anodes. Journal of Power Sources, 2007, 165(2): 598–608CrossRefGoogle Scholar
  28. 28.
    Wang W, Kumta P N. Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries. Journal of Power Sources, 2007, 172(2): 650–658CrossRefGoogle Scholar
  29. 29.
    Jo Y N, Kim Y, Kim J S, Song J H, Kim K J, Kwag C Y, Lee D J, Park C W, Kim Y J. Si-graphite composites as anode materials for lithium secondary batteries. Journal of Power Sources, 2010, 195(18): 6031–6036CrossRefGoogle Scholar
  30. 30.
    Zhao J, Lu Z, Liu N, Lee H W, McDowell M T, Cui Y. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nature Communications, 2014, 5(1): 5088CrossRefGoogle Scholar
  31. 31.
    Kim H J, Choi S, Lee S J, Seo M W, Lee J G, Deniz E, Lee Y J, Kim E K, Choi J W. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Letters, 2016, 16(1): 282–288CrossRefGoogle Scholar
  32. 32.
    Liang B, Liu Y P, Xu Y H. Silicon-based materials as high capacity anodes for next generation lithium ion batteries. Journal of Power Sources, 2014, 267: 469–490CrossRefGoogle Scholar
  33. 33.
    Andre D, Kim S J, Lamp P, Lux S F, Maglia F, Paschos O, Stiaszny B. Future generations of cathode materials: an automotive industry perspective. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 6709–6732CrossRefGoogle Scholar
  34. 34.
    Liu X H, Zhong L, Huang S, Mao S X, Zhu T, Huang J Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 2012, 6(2): 1522–1531CrossRefGoogle Scholar
  35. 35.
    de las Casas C, Li W. Li W Z. A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources, 2012, 208: 74–85CrossRefGoogle Scholar
  36. 36.
    Zhang J, Liang Y H, Zhou Q, Peng Y, Yang H B. Enhancing electrochemical properties of silicon-graphite anodes by the introduction of cobalt for lithium-ion batteries. Journal of Power Sources, 2015, 290: 71–79CrossRefGoogle Scholar
  37. 37.
    Klett M, Gilbert J A, Pupek K Z, Trask S E, Abraham D P. Layered oxide, graphite and silicon-graphite electrodes for lithium-ion cells: effect of electrolyte composition and cycling windows. Journal of the Electrochemical Society, 2017, 164(1): A6095–A6102CrossRefGoogle Scholar
  38. 38.
    Charged Electric Vehicles Magazine. Solving the energy density challenge with single wall carbon. 2017, available at websiteGoogle Scholar
  39. 39.
    Dash R, Pannala S. Theoretical limits of energy density in siliconcarbon composite anode based lithium ion batteries. Scientific Reports, 2016, 6(1): 27449CrossRefGoogle Scholar
  40. 40.
    Abram C, Shan J, Yang X, Yan C, Steingart D, Ju Y. Flame aerosol synthesis and electrochemical characterisation of Ni-rich layered cathode materials for Li-ion batteries. ACS Applied Energy Materials, 2019, 2(2): 1319–1329CrossRefGoogle Scholar
  41. 41.
    Sun A T, Zhong H, Zhou X, Tang J, Jia M, Cheng F, Wang Q, Yang J. Scalable synthesis of carbon-encapsulated nano-Si on graphite anode material with high cyclic stability for lithium-ion batteries. Applied Surface Science, 2019, 470: 454–461CrossRefGoogle Scholar
  42. 42.
    Fang G, Deng X L, Zou J Z, Zeng X. Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries. Electrochimica Acta, 2019, 295: 498–506CrossRefGoogle Scholar
  43. 43.
    Sui D, Xie Y, Zhao W, Zhang H, Zhou Y, Qin X, Ma Y, Yang Y, Chen Y. A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell. Journal of Power Sources, 2018, 384: 328–333CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  2. 2.HiT Nano, IncPrincetonUSA
  3. 3.Department of Mechatronics Engineering, College of Mechanical EngineeringGuangxi UniversityNanningChina
  4. 4.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations