Frontiers in Energy

, Volume 12, Issue 4, pp 529–539 | Cite as

Optimisation for interconnected energy hub system with combined ground source heat pump and borehole thermal storage

  • Da HuoEmail author
  • Wei Wei
  • Simon Le Blond
Research Article


Ground source heat pumps (GSHP) give zero-carbon emission heating at a residential level. However, as the heat is discharged, the temperature of the ground drops, leading to a poorer efficiency. Borehole inter-seasonal thermal storage coupled with GSHP maintains the efficiency at a high level. To adequately utilize the high performance of combined GSHP and the borehole system to further increase system efficiency and reduce cost, such a combined heating system is incorporated into the interconnected multi-carrier system to support the heat load of a community. The borehole finite element (FE) model and an equivalent borehole transfer function are proposed and respectively applied to the optimisation to analyze the variation of GSHP performance over the entire optimisation time horizon of 24 h. The results validate the borehole transfer function, and the optimisation computation time is reduced by 17 times compared with the optimisation using the FE model.


borehole thermal storage energy hub ground source heat pumps (GSHP) particle swarm optimisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the CHOICES project of the UK Department of Environment and Climate Change.


  1. 1.
    GOV.UK. Exploring how the UK can meet the 2050 emission reduction target using the web-based 2050 Calculator. 2018–06–22,
  2. 2.
    Guan X H, Xu Z B, Jia Q S. Energy-efficient buildings facilitated by microgrid. IEEE Transactions on Smart Grid, 2010, 1(3): 243–252CrossRefGoogle Scholar
  3. 3.
    Geidl M. Integrated modeling and optimization of multi-carrier energy systems. Dissertation for the Doctoral Degree. Zurich: ETH Zurich, 2007Google Scholar
  4. 4.
    Moeini-Aghtaie M, Abbaspour A, Fotuhi-Firuzabad M, Hajipour E. A decomposed solution to multiple-energy carriers optimal power flow. IEEE Transactions on Power Systems, 2014, 29(2): 707–716CrossRefGoogle Scholar
  5. 5.
    Shabanpour-Haghighi A, Seifi A R. Energy flow optimization in multicarrier systems. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1067–1077CrossRefGoogle Scholar
  6. 6.
    Kienzle F, Ahcin P, Andersson G. Valuing investments in multienergy conversion, storage, and demand-side management systems under uncertainty. IEEE Transactions on Sustainable Energy, 2011, 2(2): 194–202CrossRefGoogle Scholar
  7. 7.
    Geidl M, Andersson G. Optimal power flow of multiple energy carriers. IEEE Transactions on Power Systems, 2007, 22(1): 145–155CrossRefGoogle Scholar
  8. 8.
    Huo D, Liu Y, Gu C H, Blond S L. Optimal flow of energy-hub including heat pumps at residential level. In: Power Engineering Conference, Stoke on Trent, UK, 2015Google Scholar
  9. 9.
    Korada N, Mishra M K. Grid adaptive power management strategy for an integrated microgrid with hybrid energy storage. IEEE Transactions on Industrial Electronics, 2017, 64(4): 2884–2892CrossRefGoogle Scholar
  10. 10.
    Sun Q Y, Huang B N, Li D S, Ma D Z, Zhang Y B. Optimal placement of energy storage devices in microgrids via structure preserving energy function. IEEE Transactions on Industrial Informatics, 2016, 12(3): 1166–1179CrossRefGoogle Scholar
  11. 11.
    Sanner B, Karytsas C, Mendrinos D, Rybach L. Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics, 2003, 32(4–6): 579–588CrossRefGoogle Scholar
  12. 12.
    Adamek F, Arnold M, Andersson G. On decisive storage parameters for minimizing energy supply costs in multicarrier energy systems. IEEE Transactions on Sustainable Energy, 2014, 5(1): 102–109CrossRefGoogle Scholar
  13. 13.
    Shao C C, Wang X F, Shahidehpour M, Wang X L, Wang B Y. An MILP-based optimal power flow in multicarrier energy systems. IEEE Transactions on Sustainable Energy, 2017, 8(1): 239–248CrossRefGoogle Scholar
  14. 14.
    Huo D, Le Blond S, Gu C, Wei W, Yu D. Optimal operation of interconnected energy hubs by using decomposed hybrid particle swarm and interior-point approach. International Journal of Electrical Power & Energy Systems, 2018, 95: 36–46CrossRefGoogle Scholar
  15. 15.
    Arnold M, Negenborn R R, Andersson G, De Schutter B. Modelbased predictive control applied to multi-carrier energy systems. In: 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 2009Google Scholar
  16. 16.
    Moeini-Aghtaie M, Dehghanian P, Fotuhi-Firuzabad M, Abbaspour A. Multi-agent genetic algorithm: an online probabilistic view on economic dispatch of energy hubs constrained by wind availability. IEEE Transactions on Sustainable Energy, 2014, 5(2): 699–708CrossRefGoogle Scholar
  17. 17.
    Sun Q Y, Han R K, Zhang H G, Zhou J G, Guerrero J M. A multiagent- based consensus algorithm for distributed coordinated control of distributed generators in the energy internet. IEEE Transactions on Smart Grid, 2015, 6(6): 3006–3019CrossRefGoogle Scholar
  18. 18.
    Dou C X, Yue D, Han Q L, Guerrero J M. Multi-agent system-based event-triggered hybrid control scheme for energy internet. IEEE Access, 2017, 5(99): 3263–3272CrossRefGoogle Scholar
  19. 19.
    Sheikhi A, Rayati M, Bahrami S, Mohammad Ranjbar A. Integrated demand side management game in smart energy hubs. IEEE Transactions on Smart Grid, 2015, 6(2): 675–683CrossRefGoogle Scholar
  20. 20.
    Sheikhi A, Bahrami S, Ranjbar A M. An autonomous demand response program for electricity and natural gas networks in smart energy hubs. Energy, 2015, 89: 490–499CrossRefGoogle Scholar
  21. 21.
    Bahrami S, Sheikhi A. From demand response in smart grid toward integrated demand response in smart energy hub. IEEE Transactions on Smart Grid, 2016, 7(2): 650–658Google Scholar
  22. 22.
    Sheikhi A, Rayati M, Bahrami S, Ranjbar A M, Sattari S. A cloud computing framework on demand side management game in smart energy hubs. International Journal of Electrical Power & Energy Systems, 2015, 64: 1007–1016CrossRefGoogle Scholar
  23. 23.
    Kennedy J, Eberhart R. Particle swarm optimization. In: IEEE International Conference on Neural Networks, Perth,WA, Australia, 1995CrossRefGoogle Scholar
  24. 24.
    Bozchalui M C, Hashmi S A, Hassen H, Canizares C A, Bhattacharya K. Optimal operation of residential energy hubs in smart grids. IEEE Transactions on Smart Grid, 2012, 3(4): 1755–1766CrossRefGoogle Scholar
  25. 25.
    Houwing M, Negenborn R R, De Schutter B. Demand response with micro-CHP systems. Proceedings of the IEEE, 2011, 99(1): 200–213CrossRefGoogle Scholar
  26. 26.
    ofgem. About the domestic renewable heat incentive (RHI). 2018–06–22,
  27. 27.
    Clean Energy Prospector UK Ltd. Owen square community energy project. 2018–06–22,
  28. 28.
    Mendis N, Muttaqi K M, Sayeef S, Perera S. Application of a hybrid energy storage in a remote area power supply system. In: Energy Conference and Exhibition, Manama, Bahrain, 2011Google Scholar
  29. 29.
    Ebbesen S, Kiwitz P, Guzzella L. A generic particle swarm optimization Matlab function. In: 2012 American Control Conference, Montreal, QC, Canada, 2012CrossRefGoogle Scholar
  30. 30.
    Richardson I, Thomson M, Infield D, Clifford C. Domestic electricity use: a high-resolution energy demand model. Energy and Building, 2010, 42(10): 1878–1887CrossRefGoogle Scholar
  31. 31.
    Yao R M, Steemers K. A method of formulating energy load profile for domestic buildings in the UK. Energy and Building, 2005, 37(6): 663–671CrossRefGoogle Scholar
  32. 32.
    Li R, Wang Z M, Le Blond S, Li F R. Development of time-of-use price by clustering techniques. In: 2014 IEEE PES General Meeting, National Harbor, MD, USA, 2014CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic & Electrical EngineeringUniversity of BathBathUK

Personalised recommendations