Advertisement

Review of drought impacts on carbon cycling in grassland ecosystems

  • Tianjie Lei
  • Jie Feng
  • Cuiying Zheng
  • Shuguang Li
  • Yang Wang
  • Zhitao Wu
  • Jingxuan Lu
  • Guangyuan Kan
  • Changliang Shao
  • Jinsheng JiaEmail author
  • Hui ChengEmail author
Review Article
  • 4 Downloads

Abstract

Grasslands play a key role in both carbon and water cycles. In semi-arid and arid grassland areas, the frequency and intensity of droughts are increasing. However, the influence of a drought on grassland carbon cycling is still unclear. In this paper, the relationship between drought and grassland carbon cycling is described from the perspective of drought intensity, frequency, duration, and timing. Based on a large amount of literature, we determined that drought is one of the most prominent threats to grassland carbon cycling, although the impacts of different drought conditions are uncertain. The effects of a drought on grassland carbon cycling are more or less altered by drought-induced disturbances, whether individually or in combination. Additionally, a new conceptual model is proposed to better explain the mechanism of droughts on grassland carbon cycling. At present, evaluations of the effects of droughts on grassland carbon cycling are mainly qualitative. A data fusion model is indispensable for evaluating the fate of carbon cycling in a sustainable grassland system facing global change. In the future, multi-source data and models, based on the development of single and multiple disturbance experiments at the ecosystem level, can be utilized to systematically evaluate drought impacts on grassland carbon cycling at different timescales. Furthermore, more advanced models should be developed to address extreme drought events and their consequences on energy, water, and carbon cycling.

Keywords

drought carbon cycling grasslands conceptual model interactive mechanisms data fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by National Natural Science Foundation of China (Grant Nos. 41601569 and 51779269), National Key R&D Program of China (Nos. 2017YFC1502404 and 2017YFB0503005), and IWHR Research & Development Support Program (No. JZ0145B-612016). Thanks to Barbara Ryan for the language polishing and modification of this manuscript.

References

  1. Acharya B S, Rasmussen J, Eriksen J (2012). Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation. Agric Ecosyst Environ, 153(24): 33–39CrossRefGoogle Scholar
  2. Ali Z, Hussain I, Faisal M, Nazir M, Moemen M A, Hussain T, Shamsuddin S (2017). A novel multi-Scalar drought index for monitoring drought: the standardized precipitation temperature index. Water Resour Manage, 31(15): 4957–4969CrossRefGoogle Scholar
  3. Allaby M (2009). Grasslands. New York: Infobase PublishingGoogle Scholar
  4. Amézquita M C, Murgueitio E, Ibrahim M, Ramírez B (2010). Carbon sequestration in pasture and silvopastoral systems compared with native forests in ecosystems of tropical America. Grassland carbon sequestration: management, policy and economics, 11: 153–161Google Scholar
  5. Anderegg W R L, Schwalm C, Biondi F, Camarero J J, Koch G, Litvak M, Ogle K, Shaw J D, Shevliakova E, Williams A P, Wolf A, Ziaco E, Pacala S (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349(6247): 528–532CrossRefGoogle Scholar
  6. Andresen L C, Domínguez M T, Reinsch S, Smith A R, Schmidt I K, Ambus P, Beier C, Boeckx P, Bol R, de Dato G, Emmett B A, Estiarte M, Garnett M H, Kröel-Dulay G, Mason S L, Nielsen C S, Peñuelas J, Tietema A (2018). Isotopic methods for non-destructive assessment of carbon dynamics in shrublands under longterm climate change manipulation. Methods Ecol Evol, 9(4): 866–880CrossRefGoogle Scholar
  7. Aseeva T A, Karacheva G S, Lomakina I V, Ruban Z S (2018). Forming the productivity of spring and winter wheat in the conditions of the middle priamurye region. Russ Agric Sci, 44(2): 113–117CrossRefGoogle Scholar
  8. Astiani D, Curran L M Burhanuddin, Taherzadeh M, Mujiman, Hatta M, Pamungkas W, Gusmayanti E (2018). Fire-driven biomass and peat carbon losses and post-fire soil CO2 emission in a west kalimantan peatland forest. J Trop For Sci, 30(4): 570–575Google Scholar
  9. Baldocchi D (2011). The grass response. Nature, 476(7359): 160–161CrossRefGoogle Scholar
  10. Balogh J, Fóri S, Pintér K, Burri S, Eugster W, Papp M, Nagy Z (2015). Soil CO2 efflux and production rates as influenced by evapotranspiration in a dry grassland. Plant Soil, 388(1–2): 157–173CrossRefGoogle Scholar
  11. Battisti R, Sentelhas P C (2017). Improvement of soybean resilience to drought through deep root system in Brazil. Agron J, 109(4): 1612–1622CrossRefGoogle Scholar
  12. Bloor J M, Bardgett R D (2012). Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability. Perspect Plant Ecol Evol Syst, 14(3): 193–204CrossRefGoogle Scholar
  13. Brookshire E N J, Weaver T (2015). Long-term decline in grassland productivity driven by increasing dryness. Nat Commun, 6(1): 1–7CrossRefGoogle Scholar
  14. Canarini A, Kiær L P, Dijkstra F A (2017). Soil carbon loss regulated by drought intensity and available substrate: a meta-analysis. Soil Biol Biochem, 112: 90–99CrossRefGoogle Scholar
  15. Caracciolo D, Istanbulluoglu E, Noto L V, Collins S L (2016). Mechanisms of shrub encroachment into northern chihuahuan desert grasslands and impacts of climate change investigated using a cellular automata model. Adv Water Resour, 91: 46–62CrossRefGoogle Scholar
  16. Carlsson M, Merten M, Kayser M, Isselstein J, Wrage-Mönnig N (2017). Drought stress resistance and resilience of permanent grasslands are shaped by functional group composition and N fertilization. Agric Ecosyst Environ, 236: 52–60CrossRefGoogle Scholar
  17. Chen D, Deng X, Jin G, Samie A, Li Z (2017). Land-use-change induced dynamics of carbon stocks of the terrestrial ecosystem in Pakistan. Phys Chem Earth Parts ABC, 101: 13–20CrossRefGoogle Scholar
  18. Chen G, Tian H, Zhang C, Liu M, Ren W, Zhu W, Chappelka A H, Prior S A, Lockaby G B (2012). Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Clim Change, 114(2): 379–397CrossRefGoogle Scholar
  19. Cleland E E, Goodale U M (2019). Co-limitation by nitrogen and water constrains allocation response to drought in deciduous and evergreen shrubs in a semi-arid ecosystem. Plant Ecol, 220(2): 213–225CrossRefGoogle Scholar
  20. Conant R T (2010). Challenges and opportunities for carbon sequestration in grassland systems. In Integrated Crop Management; FAO: Rome, Italy, 1–67Google Scholar
  21. Coupe M D, Stacey J, Cahill J F Jr (2009). Limited effects of above-and belowground insects on community structure and function in a species-rich grassland. J Veg Sci, 20(1): 121–129CrossRefGoogle Scholar
  22. Craine J M, Towne E, Tolleson D, Nippert J B (2013). Precipitation timing and grazer performance in a tallgrass prairie. Oikos, 122(2): 191–198CrossRefGoogle Scholar
  23. Cuny M A C, Gendry J, Hernández-Cumplido J, Benrey B (2018). Changes in plant growth and seed production in wild lima bean in response to herbivory are attenuated by parasitoids. Oecologia, 187(2): 447–457CrossRefGoogle Scholar
  24. Daly E, Oishi A C, Porporato A, Katul G G (2008). A stochastic model for daily subsurface CO2 concentration and related soil respiration. Adv Water Resour, 31(7): 987–994CrossRefGoogle Scholar
  25. Dias M, Brüggemann W (2010). Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica, 48(1): 96–102CrossRefGoogle Scholar
  26. Diez J M, D’Antonio C M, Dukes J S, Grosholz E D, Olden J D, Sorte C J, Blumenthal D M, Bradley B A, Early R, Ibáñez I, Jones S J, Lawler J J, Miller L P (2012). Will extreme climatic events facilitate biological invasions? Front Ecol Environ, 10(5): 249–257CrossRefGoogle Scholar
  27. Han D, Wang G, Liu T, Xue B L, Kuczera G, Xu X (2018). Hydroclimatic response of evapotranspiration partitioning to prolonged droughts in semiarid grassland. J Hydrol (Amst), 563: 766–777CrossRefGoogle Scholar
  28. Dubois M, Claeys H, Van den Broeck L, Inzé D (2017). Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought. Plant Cell Environ, 40(2): 180–189CrossRefGoogle Scholar
  29. Dulamsuren C, Klinge M, Bat-Enerel B, Ariunbaatar T, Tuya D (2019). Effects of forest fragmentation on organic carbon pool densities in the Mongolian forest-steppe. For Ecol Manage, 433: 780–788CrossRefGoogle Scholar
  30. Eagle R A, Risi C, Mitchell J L, Eiler J M, Seibt U, Neelin J D, Li G, Tripati A K (2013). High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle. Proc Natl Acad Sci USA, 110(22): 8813–8818CrossRefGoogle Scholar
  31. Ebrahimi M, Sarikhani M R, Sinegani A A S, Ahmadi A, Keesstra S (2019). Estimating the soil respiration under different land uses using artificial neural network and linear regression models. Catena, 174: 371–382CrossRefGoogle Scholar
  32. Evans S E, Wallenstein M D (2012). Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry, 109(1–3): 101–116CrossRefGoogle Scholar
  33. Eze S, Palmer S M, Chapman P J (2018). Negative effects of climate change on upland grassland productivity and carbon fluxes are not attenuated by nitrogen status. Sci Total Environ, 637–638: 398–407CrossRefGoogle Scholar
  34. Falloon P, Jones C D, Ades M, Paul K (2011). Direct soil moisture controls of future global soil carbon changes: an important source of uncertainty. Global Biogeochem Cycles, 25(3): GB3010CrossRefGoogle Scholar
  35. Fauset S, Baker T R, Lewis S L, Feldpausch T R, Affum-Baffoe K, Foli E G, Hamer K C, Swaine M D (2012). Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol Lett, 15(10): 1120–1129CrossRefGoogle Scholar
  36. Ford C R, McGee J, Scandellari F, Hobbie E A, Mitchell R J (2012). Long-and short-term precipitation effects on soil CO2 efflux and total belowground carbon allocation. Agric Meteorol, 156: 54–64CrossRefGoogle Scholar
  37. Franks P J, Drake P L, Froend R H (2007). Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ, 30(1): 19–30CrossRefGoogle Scholar
  38. Ganjurjav H, Hu G, Wan Y, Li Y, Danjiu L, Gao Q (2018). Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai-Tibetan Plateau. Ecol Evol, 8(3): 1507–1520CrossRefGoogle Scholar
  39. Gao Y, Xia J, Chen Y, Zhao Y, Kong Q, Lang Y (2017). Effects of extreme soil water stress on photosynthetic efficiency and water consumption characteristics of Tamarix chinensis in China’s Yellow River Delta. J For Res, 28(3): 491–501CrossRefGoogle Scholar
  40. Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2018). Predictions of future meteorological drought hazard (∼ 2070) under the representative concentration path (RCP) 4.5 climate change scenarios in raya, northern ethiopia. Model Earth Syst Environ, 4(2): 475–488CrossRefGoogle Scholar
  41. Green J K, Seneviratne S I, Berg A M, Findell K L, Hagemann S, Lawrence D M, Gentine P (2019). Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 565(7740): 476–479CrossRefGoogle Scholar
  42. Grimstead D N, Reynolds A C, Hudson A M, Akins N J, Betancourt J L (2016). Reduced population variance in strontium isotope ratios informs domesticated turkey use at Chaco Canyon, New Mmexico, USA. J Archaeol Method Theory, 23(1): 127–149CrossRefGoogle Scholar
  43. Guo L, Cheng J, Luedeling E, Koerner S E, He J S, Xu J, Gang C, Li W, Luo R, Peng C (2017). Critical climate periods for grassland productivity on China’s Loess Plateau. Agric Meteorol, 233: 101–109CrossRefGoogle Scholar
  44. Han D, Wang G, Liu T, Xue B L, Kuczera G, Xu X (2018). Hydroclimatic response of evapotranspiration partitioning to prolonged droughts in semiarid grassland. J Hydrol (Amst), 563: 766–777CrossRefGoogle Scholar
  45. Harde H (2017). Scrutinizing the carbon cycle and CO2 residence time in the atmosphere. Global Planet Change, 152: 19–26CrossRefGoogle Scholar
  46. Harper C W, Blair J M, Fay P A, Knapp A K, Carlisle J D (2005). Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Glob Change Biol, 11(2): 322–334CrossRefGoogle Scholar
  47. He B, Liu J, Guo L, Wu X, Xie X, Zhang Y, Chen Z, Zhong Z, Chen Z (2018). Recovery of ecosystem carbon and energy fluxes from the 2003 drought in Europe and the 2012 drought in the United States. Geophys Res Lett, 45(10): 4879–4888CrossRefGoogle Scholar
  48. Heitschmidt R, Haferkamp M(2003). Ecological consequences of drought and grazing on grasslands of the Northern Great Plains. Book Chapter, 207–226Google Scholar
  49. Heitschmidt R, Vermeire L (2006). Can abundant summer precipitation counter losses in herbage production caused by spring drought? Rangeland Ecol Manag, 59(4): 392–399CrossRefGoogle Scholar
  50. Heschel M S, Riginos C (2005). Mechanisms of selection for drought stress tolerance and avoidance in Impatiens capensis (Balsaminaceae). Am J Bot, 92(1): 37–44CrossRefGoogle Scholar
  51. Hofer D, Suter M, Haughey E, Finn J A, Hoekstra N J, Buchmann N, Lüscher A (2016). Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J Appl Ecol, 53(4): 1023–1034CrossRefGoogle Scholar
  52. Hoover D L, Rogers B M (2016). Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling. Glob Change Biol, 22(5): 1809–1820CrossRefGoogle Scholar
  53. Hoover D L, Knapp A K, Smith M D (2017). Photosynthetic responses of a dominant C4 grass to an experimental heat wave are mediated by soil moisture. Oecologia, 183(1): 303–313CrossRefGoogle Scholar
  54. Huang J, Zhai J, Jiang T, Wang Y, Li X, Wang R, Xiong M, Su B, Fischer T (2018). Analysis of future drought characteristics in china using the regional climate model cclm. Clim Dyn, 50(1–2): 507–525CrossRefGoogle Scholar
  55. Huang L, He B, Han L, Liu J, Wang H, Chen Z (2017). A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data. Sci Total Environ, 601–602: 1097–1107CrossRefGoogle Scholar
  56. Hussain M, Grünwald T, Tenhunen J, Li Y, Mirzae H, Bernhofer C, Otieno D, Dinh N, Schmidt M, Wartinger M, Owen K (2011). Summer drought influence on CO2 and water fluxes of extensively managed grassland in Germany. Agric Ecosyst Environ, 141(1–2): 67–76CrossRefGoogle Scholar
  57. Ingrisch J, Karlowsky S, Anadon-Rosell A, Hasibeder R, König A, Augusti A, Gleixner G, Bahn M (2018). Land use alters the drought responses of productivity and CO2 fluxes in mountain grassland. Ecosystems (NY), 21(4): 689–703CrossRefGoogle Scholar
  58. Jaksic V, Kiely G, Albertson J, Oren R, Katul G, Leahy P, Byrne K A (2006). Net ecosystem exchange of grassland in contrasting wet and dry years. Agric Meteorol, 139(3–4): 323–334CrossRefGoogle Scholar
  59. Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler S E, Nagy L, Otieno D, Pritsch K, Rascher U, Schädler M, Schloter M, Singh B K, Stadler J, Walter J, Wellstein C, Wöllecke J, Beierkuhnlein C (2011). Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol, 99(3): 689–702CrossRefGoogle Scholar
  60. Jeong Y W, Choi S K, Choi Y S, Kim S J (2015). Production of biocrude-oil from swine manure by fast pyrolysis and analysis of its characteristics. Renew Energy, 79: 14–19CrossRefGoogle Scholar
  61. Jia B, Wang Y, Xie Z (2018). Responses of the terrestrial carbon cycle to drought over china: modeling sensitivities of the interactive nitrogen and dynamic vegetation. Ecol Modell, 368: 52–68CrossRefGoogle Scholar
  62. Jia H, Zhang Y, Tian S, Emon R M, Yang X, Yan H, Wu T, Lu W, Siddique K H M, Han T (2017). Reserving winter snow for the relief of spring drought by film mulching in northeast China. Field Crops Res, 209: 58–64CrossRefGoogle Scholar
  63. Jiang Y, Xu Z, Zhou G, Liu T (2016). Elevated CO2 can modify the response to a water status gradient in a steppe grass: from cell organelles to photosynthetic capacity to plant growth. BMC Plant Biol, 16(1): 157–173CrossRefGoogle Scholar
  64. Jongen M, Pereira J S, Aires L M I, Pio C A (2011). The effects of drought and timing of precipitation on the inter-annual variation in ecosystem-atmosphere exchange in a Mediterranean grassland. Agric Meteorol, 151(5): 595–606CrossRefGoogle Scholar
  65. Joos O, Hagedorn F, Heim A, Gilgen A, Schmidt M, Siegwolf R, Buchmann N (2010). Summer drought reduces total and litter-derived soil CO2 effluxes intemperate grassland-clues from a 13C litter addition experiment. Biogeosciences, 7(3): 1031–1041CrossRefGoogle Scholar
  66. Kallenbach C M, Conant R T, Calderón F, Wallenstein M D (2019). A novel soil amendment for enhancing soil moisture retention and soil carbon in drought-prone soils. Geoderma, 337: 256–265CrossRefGoogle Scholar
  67. Kardol P, Cregger M A, Campany C E, Classen A T (2010). Soil ecosystem functioning under climate change: plant species and community effects. Ecology, 91(3): 767–781CrossRefGoogle Scholar
  68. Karlowsky S, Augusti A, Ingrisch J, Hasibeder R, Lange M, Lavorel S, Bahn M, Gleixner G (2018). Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions. J Ecol, 106(3): 1230–1243CrossRefGoogle Scholar
  69. Khalifa M, Elagib N A, Ribbe L, Schneider K (2018). Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia. Sci Total Environ, 624: 790–806CrossRefGoogle Scholar
  70. Kim D, Lee M I, Seo E (2019). Improvement of soil respiration parameterization in a dynamic global vegetation model and its impact on the simulation of terrestrial carbon fluxes. J Clim, 32(1): 127–143CrossRefGoogle Scholar
  71. Kipling R P, Virkajärvi P, Breitsameter L, Curnel Y, De Swaef T, Gustavsson A M, Hennart S, Höglind M, Järvenranta K, Minet J, Nendel C, Persson T, Picon-Cochard C, Rolinski S, Sandars D L, Scollan N D, Sebek L, Seddaiu G, Topp C F E, Twardy S, Van Middelkoop J, Wu L, Bellocchi G (2016). Key challenges and priorities for modelling European grasslands under climate change. Sci Total Environ, 566–567: 851–864CrossRefGoogle Scholar
  72. Knapp A K, Beier C, Briske D D, Classen A T, Luo Y, Reichstein M, Smith M D, Smith S D, Bell J E, Fay P A, Heisler J L, Leavitt S W, Sherry R, Smith B, Weng E (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience, 58(9): 811–821CrossRefGoogle Scholar
  73. Kukumägi M, Ostonen I, Uri V, Helmisaari H S, Kanal A, Kull O, Lõhmus K (2017). Variation of soil respiration and its components in hemiboreal Norway spruce stands of different ages. Plant Soil, 414(1–2): 265–280CrossRefGoogle Scholar
  74. Kwon H, Pendall E, Ewers B E, Cleary M, Naithani K (2008). Spring drought regulates summer net ecosystem CO2 exchange in a sagebrush-steppe ecosystem. Agric Meteorol, 148(3): 381–391CrossRefGoogle Scholar
  75. Larionov G A, Bushueva O G, Dobrovol’Skaya N G, Kiryukhina Z P, Litvin L F, Krasnov S F (2016). Assessing the contribution of nonhydraulic forces to the destruction of bonds between soil particles during water erosion. Eurasian Soil Sci, 49(5): 546–550CrossRefGoogle Scholar
  76. Lei T, Pang Z, Wang X, Li L, Fu J, Kan G, Zhang X, Ding L, Li J, Huang S, Shao C (2016). Drought and carbon cycling of grassland ecosystems under global change: a review. Water, 8(10): 460CrossRefGoogle Scholar
  77. Lei T, Wu J, Li X, Geng G, Shao C, Zhou H, Wang Q, Liu L (2015). A new framework for evaluating the impacts of drought on net primary productivity of grassland. Sci Total Environ, 536: 161–172CrossRefGoogle Scholar
  78. Li M, Dong Y, Qi Y C, Geng Y B (2004). Impact of extreme drought on the fluxes of CO2, CH4, N2O from temperate steppe ecosystems. Resour Sci, 26(3): 89–95Google Scholar
  79. Li Y, Liu Y, Harris P, Sint H, Murray P J, Lee M R F, Wu L (2017). Assessment of soil water, carbon and nitrogen cycling in reseeded grassland on the North Wyke Farm Platform using a process-based model. Sci Total Environ, 603–604: 27–37CrossRefGoogle Scholar
  80. Li L, Fan W, Kang X, Wang Y, Cui X, Xu C, Griffin K, Hao Y (2016). Responses of greenhouse gas fluxes to climate extremes in a semiarid grassland. Atmos Environ, 142: 32–42CrossRefGoogle Scholar
  81. Li P, Zhang L, Yu G, Liu C, Ren X, He H, Liu M, Wang H, Zhu J, Ge R, Zeng N (2018). Interactive effects of seasonal drought and nitrogen deposition on carbon fluxes in a subtropical evergreen coniferous forest in the East Asian monsoon region. Agric Meteorol, 263: 90–99CrossRefGoogle Scholar
  82. Li Y, Chen L, Wen H, Zhou T, Zhang T, Gao X (2014). 454 pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas. J Microbiol Biotechnol, 24(3): 313–323CrossRefGoogle Scholar
  83. Liu Y, Li J, Jin Y, Zhang Y, Sha L, Grace J, Song Q, Zhou W, Chen A, Li P, Zhang S (2018). The influence of drought strength on soil respiration in a woody savanna ecosystem, southwest China. Plant Soil, 428(1–2): 321–333CrossRefGoogle Scholar
  84. Liu Y, Yang Y, Wang Q, Du X, Li J, Gang C, Zhou W, Wang Z (2019). Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient. Sci Total Environ, 652: 671–682CrossRefGoogle Scholar
  85. Longo M, Knox R G, Levine N M, Alves L F, Bonal D, Camargo P B, Fitzjarrald D R, Hayek M N, Restrepo-Coupe N, Saleska S R, da Silva R, Stark S C, Tapajös R P, Wiedemann K T, Zhang K, Wofsy S C, Moorcroft P R (2018). Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytol, 219(3): 914–931CrossRefGoogle Scholar
  86. Louhaichi M, Tastad A (2010). The Syrian steppe: past trends, current status, and future priorities. Rangelands, 32(2): 2–7CrossRefGoogle Scholar
  87. Luo Y, Zhou X (2010). Soil Respiration and the Environment. Norman: Academic Press, 3–133Google Scholar
  88. Ma Q, Zhang J, Wang R, Ha S, Zhu M, Li D (2016). System design of loss fast evaluation for grassland drought disaster based on RS, GIS and GPS. In: 7th Annual Meeting of Risk Analysis Council of China Association for Disaster Prevention (RAC-2016). Changsha: Springer, 759–763Google Scholar
  89. Malone S L, Tulbure M G, Pérez-Luque A J, Assal T J, Bremer L L, Drucker D P, Hillis V, Varela S, Goulden M L (2016). Drought resistance across California ecosystems: evaluating changes in carbon dynamics using satellite imagery. Ecosphere, 7(11): e01561CrossRefGoogle Scholar
  90. Manzoni S, Schaeffer S M, Katul G, Porporato A, Schimel J P (2014). A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biol Biochem, 73: 69–83CrossRefGoogle Scholar
  91. Manzoni S, Taylor P, Richter A, Porporato A, Ågren G I (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol, 196(1): 79–91CrossRefGoogle Scholar
  92. Martí-Roura M, Casals P, Romanyà J (2011). Temporal changes in soil organic C under Mediterranean shrublands and grasslands: impact of fire and drought. Plant Soil, 338(1–2): 289–300CrossRefGoogle Scholar
  93. McDowell N, Pockman W T, Allen C D, Breshears D D, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams D G, Yepez E A (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol, 178(4): 719–739CrossRefGoogle Scholar
  94. Miranda A, Miranda H, Lloyd J, Grace J, Francey R, McIntyre J, Meir P, Riggan P, Lockwood R, Brass J (1997). Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes. Plant Cell Environ, 20(3): 315–328CrossRefGoogle Scholar
  95. Mirzaei H, Kreyling J, Zaman Hussain M, Li Y, Tenhunen J, Beierkuhnlein C, Jentsch A (2008). A single drought event of 100-year recurrence enhances subsequent carbon uptake and changes carbon allocation in experimental grassland communities. J Plant Nutr Soil Sci, 171(5): 681–689CrossRefGoogle Scholar
  96. Mishra A K, Singh V P (2011). Drought modeling—a review. J Hydrol (Amst), 403(1–2): 157–175CrossRefGoogle Scholar
  97. Mueller B, Seneviratne S I (2012). Hot days induced by precipitation deficits at the global scale. Proc Natl Acad Sci USA, 109(31): 12398–12403CrossRefGoogle Scholar
  98. Neely C, Bunning S, Wilkes A (2009). Review of evidence on drylands pastoral systems and climate change: implications and opportunities for mitigation and adaptation. In: Land Tenure and Management Unit (NRLA), FAO. Rome: 1–50Google Scholar
  99. Niboyet A, Bardoux G, Barot S, Bloor J M (2017). Elevated CO2 mediates the short-term drought recovery of ecosystem function in low-diversity grassland systems. Plant Soil, 420(1–2): 289–302CrossRefGoogle Scholar
  100. Nogueira C, Bugalho M N, Pereira J S, Caldeira M C (2017). Extended autumn drought, but not nitrogen deposition, affects the diversity and productivity of a mediterranean grassland. Environ Exp Bot, 138: 99–108CrossRefGoogle Scholar
  101. Nogueira C, Nunes A, Bugalho M N, Branquinho C, McCulley R L, Caldeira M C (2018). Nutrient addition and drought interact to change the structure and decrease the functional diversity of a Mediterranean grassland. Front Ecol Evol, 6: 155CrossRefGoogle Scholar
  102. Nogueira C, Werner C, Rodrigues A, Caldeira M C (2019). A prolonged dry season and nitrogen deposition interactively affect CO2 fluxes in an annual Mediterranean grassland. Sci Total Environ, 654: 978–986CrossRefGoogle Scholar
  103. Nowak R S (2017). Average is best. Nat Clim Chang, 7(2): 101–102CrossRefGoogle Scholar
  104. Obermeier W A, Lehnert L W, Kammann C I, Müller C, Grünhage L, Luterbacher J, Erbs M, Moser G, Seibert R, Yuan N, Bendix J (2017). Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat Clim Chang, 7(2): 137–141CrossRefGoogle Scholar
  105. Ochoa-Hueso R, Collins S L, Delgado-Baquerizo M, Hamonts K, Pockman W T, Sinsabaugh R L, Smith M D, Knapp A K, Power S A (2018). Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob Change Biol, 24(7): 2818–2827CrossRefGoogle Scholar
  106. Padgham J, Jabbour J, Dietrich K (2015). Managing change and building resilience: a multi-stressor analysis of urban and peri-urban agriculture in africa and asia. Urban Climate, 12: 183–204CrossRefGoogle Scholar
  107. Peck M R, Kaina G S, Hazell R J, Isua B, Alok C, Paul L, Stewart A J (2017). Estimating carbon stock in lowland Papua New Guinean forest: low density of large trees results in lower than global average carbon stock. Austral Ecol, 42(8): 964–975CrossRefGoogle Scholar
  108. Peng D, Zhang B, Wu C, Huete A R, Gonsamo A, Lei L, Ponce-Campos G E, Liu X, Wu Y (2017). Country-level net primary production distribution and response to drought and land cover change. Sci Total Environ, 574: 65–77CrossRefGoogle Scholar
  109. Perveen N, Barot S, Alvarez G, Klumpp K, Martin R, Rapaport A, Herfurth D, Louault F, Fontaine S (2014). Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model. Glob Change Biol, 20(4): 1174–1190CrossRefGoogle Scholar
  110. Valluru R, Davies W J, Reynolds M P, Dodd I C (2016). Foliar abscisic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat. Front Plant Sci, 7: 461CrossRefGoogle Scholar
  111. Reichstein M, Bahn M, Ciais P, Frank D, Mahecha M D, Seneviratne S I, Zscheischler J, Beer C, Buchmann N, Frank D C, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M (2013). Climate extremes and the carbon cycle. Nature, 500(7462): 287–295CrossRefGoogle Scholar
  112. Riis T, Levi P S, Baattrup-Pedersen A, Jeppesen K G, Rosenhøj Leth S (2017). Experimental drought changes ecosystem structure and function in a macrophyte-rich stream. Aquat Sci, 79(4): 841–853CrossRefGoogle Scholar
  113. Roby M C, Salas Fernandez M G, Heaton E A, Miguez F E, Vanloocke A (2017). Biomass sorghum and maize have similar water-use-efficiency under non-drought conditions in the rain-fed midwest US. Agric Meteorol, 247: 434–444CrossRefGoogle Scholar
  114. Roy J, Picon-Cochard C, Augusti A, Benot M L, Thiery L, Darsonville O, Landais D, Piel C, Defossez M, Devidal S, Escape C, Ravel O, Fromin N, Volaire F, Milcu A, Bahn M, Soussana J F (2016). Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme. Proc Natl Acad Sci USA, 113(22): 6224–6229CrossRefGoogle Scholar
  115. Saladyga T, Hessl A, Nachin B, Pederson N (2013). Privatization, drought, and fire exclusion in the Tuul River watershed, Mongolia. Ecosystems (NY), 16(6): 1139–1151CrossRefGoogle Scholar
  116. Salehnia N, Alizadeh A, Sanaeinejad H, Bannayan M, Zarrin A, Hoogenboom G (2017). Estimation of meteorological drought indices based on agmerra precipitation data and station-observed precipitation data. J Arid Land, 9(6): 797–809CrossRefGoogle Scholar
  117. Sanaullah M, Chabbi A, Girardin C, Durand J L, Poirier M, Rumpel C (2014). Effects of drought and elevated temperature on biochemical composition of forage plants and their impact on carbon storage in grassland soil. Plant Soil, 374(1–2): 767–778CrossRefGoogle Scholar
  118. Sanaullah M, Chabbi A, Rumpel C, Kuzyakov Y (2012). Carbon allocation in grassland communities under drought stress followed by 14C pulse labeling. Soil Biol Biochem, 55: 132–139CrossRefGoogle Scholar
  119. Sándor R, Barcza Z, Acutis M, Doro L, Hidy D, Köchy M, Minet J, Lellei-Kovács E, Ma S, Perego A, Rolinski S, Ruget F, Sanna M, Seddaiu G, Wu L, Bellocchi G (2017). Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: uncertainties and ensemble performance. Eur J Agron, 88: 22–40CrossRefGoogle Scholar
  120. Sayer E J, Oliver A E, Fridley J D, Askew A P, Mills R T E, Grime J P (2017). Links between soil microbial communities and plant traits in a species-rich grassland under long-term climate change. Ecol Evol, 7(3): 855–862CrossRefGoogle Scholar
  121. Scasta J D, Thacker E T, Hovick T J, Engle D M, Allred B W, Fuhlendorf S D, Weir J R (2016). Patch-burn grazing (pbg) as a livestock management alternative for fire-prone ecosystems of north America. Renew Agric Food Syst, 31(6): 550–567CrossRefGoogle Scholar
  122. Schrama M, Bardgett R D (2016). Grassland invasibility varies with drought effects on soil functioning. J Ecol, 104(5): 1250–1258CrossRefGoogle Scholar
  123. Scott R L, Hamerlynck E P, Jenerette G D, Moran M S, Barron-Gafford G A(2010). Carbon dioxide exchange in a semidesert grassland through drought-induced vegetation change. J Geophys Res-Biogeo, (2005–2012): 115Google Scholar
  124. Scott R L, Jenerette G D, Potts D L, Huxman T.E(2009). Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J Geophys Res-Biogeo, (2005–2012): 114Google Scholar
  125. Scurlock J, Hall D (1998). The global carbon sink: a grassland perspective. Glob Change Biol, 4(2): 229–233CrossRefGoogle Scholar
  126. Prudhomme C, Giuntoli I, Robinson E L, Clark D B, Arnell N W, Dankers R, Fekete B M, Franssen W, Gerten D, Gosling S N, Hagemann S, Hannah D M, Kim H, Masaki Y, Satoh Y, Stacke T, Wada Y, Wisser D (2014). Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci USA, 111(9): 3262–3267CrossRefGoogle Scholar
  127. Shinoda M, Nachinshonhor G, Nemoto M (2010). Impact of drought on vegetation dynamics of the Mongolian steppe: a field experiment. J Arid Environ, 74(1): 63–69CrossRefGoogle Scholar
  128. Shrestha B, Maskey S, Babel M S, van Griensven A, Uhlenbrook S (2018). Sediment related impacts of climate change and reservoir development in the Lower Mekong River Basin: a case study of the Nam Ou basin, Lao PDR. Clim Change, 149(1): 13–27CrossRefGoogle Scholar
  129. Signarbieux C, Feller U (2012). Effects of an extended drought period on physiological properties of grassland species in the field. J Plant Res, 125(2): 251–261CrossRefGoogle Scholar
  130. Smith M D (2011). An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol, 99(3): 656–663CrossRefGoogle Scholar
  131. Song X, Wang Y, Lv X (2016). Responses of plant biomass, photosynthesis and lipid peroxidation to warming and precipitation change in two dominant species (Stipa grandis and Leymus chinensis) from North China Grasslands. Ecol Evol, 6(6): 1871–1882CrossRefGoogle Scholar
  132. Soussana J F, Soussana J F, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004). Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manage, 20(2): 219–230CrossRefGoogle Scholar
  133. Sponseller R A (2007). Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Glob Change Biol, 13(2): 426–436CrossRefGoogle Scholar
  134. Stampfli A, Bloor J M G, Fischer M, Zeiter M (2018). High land-use intensity exacerbates shifts in grassland vegetation composition after severe experimental drought. Glob Change Biol, 24(5): 2021–2034CrossRefGoogle Scholar
  135. Su P, Lou J, Brookes P C, Luo Y, He Y, Xu J (2017). Taxon-specific responses of soil microbial communities to different soil priming effects induced by addition of plant residues and their biochars. J Soils Sediments, 17(3): 674–684CrossRefGoogle Scholar
  136. Suseela V, Conant R T, Wallenstein M D, Dukes J S (2012). Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Change Biol, 18(1): 336–348CrossRefGoogle Scholar
  137. Tang L L, Cai X B, Gong W S, Lu J Z, Chen X L, Lei Q, Yu G L (2018). Increased vegetation greenness aggravates water conflicts during lasting and intensifying drought in the Poyang Lake Watershed, China. Forests, 9(1): 24CrossRefGoogle Scholar
  138. Tardieu F, Granier C, Muller B (2011). Water deficit and growth. Co-ordinating processes without an orchestrator? Curr Opin Plant Biol, 14(3): 283–289CrossRefGoogle Scholar
  139. Tessema Z K, de Boer W F, Prins H H T (2016). Changes in grass plant populations and temporal soil seed bank dynamics in a semi-arid African savanna: implications for restoration. J Environ Manage, 182: 166–175CrossRefGoogle Scholar
  140. Thiessen S, Gleixner G, Wutzler T, Reichstein M (2013). Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass-an incubation study. Soil Biol Biochem, 57: 739–748CrossRefGoogle Scholar
  141. Thomey M L, Ford P L, Reeves M C, Finch D M, Litvak M E, Collins S L (2014). Climate change impacts on future carbon stores and management of warm deserts of the United States. Rangelands, 36(1): 16–24CrossRefGoogle Scholar
  142. Thomson L J, Macfadyen S, Hoffmann A A (2010). Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control, 52(3): 296–306CrossRefGoogle Scholar
  143. Thorpe J (2011). Vulnerability of Prairie Grasslands to Climate Change; No. 12855-2E11; Saskatchewan Research Council: SaskatoonGoogle Scholar
  144. Tollerud H, Brown J, Loveland T, Mahmood R, Bliss N (2018). Drought and land-cover conditions in the great plains. Earth Interact, 22(17): 1–25CrossRefGoogle Scholar
  145. Trifilò P, Casolo V, Raimondo F, Petrussa E, Boscutti F, Lo Gullo M A, Nardini A (2017). Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus Nobilis L.: the possible link between carbon starvation and hydraulic failure. Plant Physiol Biochem, 120: 232–241CrossRefGoogle Scholar
  146. Trzcinski M K, Srivastava D S, Corbara B, Dézerald O, Leroy C, Carrias J F, Dejean A, Céréghino R (2016). The effects of food web structure on ecosystem function exceeds those of precipitation. J Anim Ecol, 85(5): 1147–1160CrossRefGoogle Scholar
  147. Tubi A, Feitelson E (2019). Changing drought vulnerabilities of marginalized resource-dependent groups: a long-term perspective of Israel’s Negev Bedouin. Reg Environ Change, 19(2): 477–487CrossRefGoogle Scholar
  148. Urbanek E, Doerr S H (2017). CO2 efflux from soils with seasonal water repellency. Biogeosciences, 14(20): 4781–4794CrossRefGoogle Scholar
  149. Valliere J M, Irvine I C, Santiago L, Allen E B (2017). High N, dry: experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought. Glob Change Biol, 23(10): 4333–4345CrossRefGoogle Scholar
  150. van der Molen M K, Dolman A J, Ciais P, Eglin T, Gobron N, Law B E, Meir P, Peters W, Phillips O L, Reichstein M, Chen T, Dekker S C, Doubková M, Friedl M A, Jung M, van den Hurk B J J M, de Jeu R A M, Kruijt B, Ohta T, Rebel K T, Plummer S, Seneviratne S I, Sitch S, Teuling A J, van der Werf G R, Wang G (2011). Drought and ecosystem carbon cycling. Agric Meteorol, 151(7): 765–773CrossRefGoogle Scholar
  151. van Eekeren N, Bommelé L, Bloem J, Schouten T, Rutgers M, de Goede R, Reheul D, Brussaard L (2008). Soil biological quality after 36 years of ley-arable cropping, permanent grassland and permanent arable cropping. Appl Soil Ecol, 40(3): 432–446CrossRefGoogle Scholar
  152. Varga B, Vida G, Varga-László E, Hoffmann B, Veisz O (2017). Combined effect of drought stress and elevated atmospheric CO2 concentration on the yield parameters and water use properties of winter wheat (triticum aestivum l.) genotypes. J Agron Crop Sci, 203 (3): 192–205CrossRefGoogle Scholar
  153. Vargas J, Paneque P (2019). Challenges for the integration of water resource and drought-risk management in Spain. Sustainability, 11(2): 308CrossRefGoogle Scholar
  154. Wagena M B, Sommerlot A, Abiy A Z, Collick A S, Langan S, Fuka D R, Easton Z M (2016). Climate change in the Blue Nile Basin Ethiopia: implications for water resources and sediment transport. Clim Change, 139(2): 229–243CrossRefGoogle Scholar
  155. Waldrop M P, Holloway J M, Smith D B, Goldhaber M B, Drenovsky R E, Scow K M, Dick R, Howard D, Wylie B, Grace J B (2017). The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale. Ecology, 98(7): 1957–1967CrossRefGoogle Scholar
  156. Walter J, Nagy L, Hein R, Rascher U, Beierkuhnlein C, Willner E, Jentsch A (2011). Do plants remember drought? Hints towards a drought-memory in grasses. Environ Exp Bot, 71(1): 34–40CrossRefGoogle Scholar
  157. Wang J S, Kawa S R, Collatz G J, Sasakawa M, Gatti L V, Machida T, Liu Y, Manyin M (2018a). A global synthesis inversion analysis of recent variability in CO2 fluxes using gosat and in situ observations. Atmos Chem Phys, 18(15): 11097–11124CrossRefGoogle Scholar
  158. Wang K, Shen C, Sun B, Wang X. N, Wei D, Liu L Y (2018a). Effects of drought stress on C, N and P stoichiometry of Ulmus pumila seedlings in Horqin sandy land, China. J of Appl Ecol, 29(7): 2286–2294Google Scholar
  159. Wang Y, Hu C, Dong W, Li X, Zhang Y, Qin S, Oenema O (2015). Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain. Agric Ecosyst Environ, 206: 33–45CrossRefGoogle Scholar
  160. Wang Y, Hao Y, Cui X Y, Zhao H, Xu C, Zhou X, Xu Z (2014). Responses of soil respiration and its components to drought stress. J Soils Sediments, 14(1): 99–109CrossRefGoogle Scholar
  161. Wang Z, Ma Q, Wang J, Chen S, Fan Y, Deng L (2018b). Empirical study on agricultural drought adaptation of typical rainfed areas in Shidian County, China. Int J Disaster Risk Reduct, 28: 394–403CrossRefGoogle Scholar
  162. Weißhuhn K, Auge H, Prati D (2011). Geographic variation in the response to drought in nine grassland species. Basic Appl Ecol, 12(1): 21–28CrossRefGoogle Scholar
  163. Whitford W, Steinberger Y (2012). Effects of seasonal grazing, drought, fire, and carbon enrichment on soil microarthropods in a desert grassland. J Arid Environ, 83: 10–14CrossRefGoogle Scholar
  164. Williams N, Holland K (2007). The ecology and invasion history of hawkweeds (Hieracium species) in Australia. Plant Prot Q, 22(2): 76–80Google Scholar
  165. Xiao L, Zhang Y, Li P, Xu G, Shi P, Zhang Y (2019). Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and chinese pine forest on the loess plateau. Geoderma, 334: 1–8CrossRefGoogle Scholar
  166. Xu Z, Li Z, Liu H, Zhang X, Hao Q, Cui Y, Yang S, Liu M, Wang H, Gielen G, Song Z (2018). Soil organic carbon in particle-size fractions under three grassland types in Inner Mongolia, China. J Soils Sediments, 18(5): 1896–1905CrossRefGoogle Scholar
  167. Hao Y, Zhang H, Biederman J A, Li L, Cui X, Xue K, Du J, Wang Y (2018). Seasonal timing regulates extreme drought impacts on CO2 and H2O exchanges over semiarid steppes in Inner Mongolia, China. Agric Ecosyst Environ, 266: 153–166CrossRefGoogle Scholar
  168. Yang J, Tian H, Pan S, Chen G, Zhang B, Dangal S (2018). Amazon drought and forest response: largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Glob Change Biol, 24(5): 1919–1934CrossRefGoogle Scholar
  169. Yuhui W, Jiquan C, Guangsheng Z, Changliang S, Jun C, Yu W, Jianmin S (2018). Predominance of precipitation event controls ecosystem CO2 exchange in an Inner Mongolian desert grassland, China. J Clean Prod, 197(1): 781–793CrossRefGoogle Scholar
  170. Yuste J C, Penuelas J, Estiarte M, Garcia-Mas J, Mattana S, Ogaya R, Pujol M, Sardans J (2011). Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob Change Biol, 17(3): 1475–1486CrossRefGoogle Scholar
  171. Zaka S, Ahmed L Q, Escobar-Gutiérrez A J, Gastal F, Julier B, Louarn G (2017). How variable are non-linear developmental responses to temperature in two perennial forage species? Agric Meteorol, 232: 433–442CrossRefGoogle Scholar
  172. Zaka S, Frak E, Julier B, Gastal F, Louarn G (2016). Intraspecific variation in thermal acclimation of photosynthesis across a range of temperatures in a perennial crop. AoB Plants, 8Google Scholar
  173. Zhang C, Zhang J, Zhang H, Zhao J, Wu Q, Zhao Z, Cai T (2015). Mechanisms for the relationships between water-use efficiency and carbon isotope composition and specific leaf area of maize (zea maysl.) under water stress. Plant Growth Regul, 77(2): 233–243CrossRefGoogle Scholar
  174. Zhao M, Running S W (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940–943CrossRefGoogle Scholar
  175. Zhong Y, Yan W, Zong Y, Shangguan Z (2016). Biotic and abiotic controls on the diel and seasonal variation in soil respiration and its components in a wheat field under long-term nitrogen fertilization. Field Crops Res, 199: 1–9CrossRefGoogle Scholar
  176. Zhou L, Wang S, Chi Y, Ju W, Huang K, Mickler R, Wang M, Yu Q (2018). Changes in the carbon and water fluxes of subtropical forest ecosystems in south-western China related to drought. Water, 10(7): 821–838CrossRefGoogle Scholar
  177. Zhou X, Sherry R A, An Y, Wallace L L, Luo Y (2006). Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Global Biogeochem Cycles, 20(1)Google Scholar
  178. Zwicke M, Alessio G A, Thiery L, Falcimagne R, Baumont R, Rossignol N, Soussana J F, Picon-Cochard C (2013). Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies. Glob Change Biol, 19(11): 3435–3448Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Tianjie Lei
    • 1
    • 2
  • Jie Feng
    • 1
    • 2
  • Cuiying Zheng
    • 1
    • 2
  • Shuguang Li
    • 1
    • 2
  • Yang Wang
    • 1
    • 2
  • Zhitao Wu
    • 3
  • Jingxuan Lu
    • 1
    • 2
  • Guangyuan Kan
    • 1
    • 2
  • Changliang Shao
    • 4
    • 5
  • Jinsheng Jia
    • 1
    • 2
    Email author
  • Hui Cheng
    • 1
    • 2
    • 6
    Email author
  1. 1.State Key Laboratory of Simulation and Regulation of Water Cycle in River BasinBeijingChina
  2. 2.China Institute of Water Resources and Hydropower Research (IWHR)BeijingChina
  3. 3.Institute of Loess PlateauShanxi UniversityTaiyuanChina
  4. 4.National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
  5. 5.Department of Geography/CGCEOMichigan State UniversityEast LansingUSA
  6. 6.State Key Laboratory of Hydrology-Water Resources and Hydraulic EngineeringHohai UniversityNanjingChina

Personalised recommendations