Advertisement

Frontiers of Earth Science

, Volume 13, Issue 2, pp 422–429 | Cite as

The 2015/16 El Niño-related glacier changes in the tropical Andes

  • Bijeesh Kozhikkodan VeettilEmail author
  • Jefferson Cardia Simões
Research Article
  • 28 Downloads

Abstract

Significant changes in the area and snowline altitude of two glacierized mountains – Nevado Champara (Cordillera Blanca, Peru) and Cerro Tilata (Cordillera Real, Bolivia) – in the tropical Andes, before and after the recent El Niño in 2015/16 period, have been analysed using Sentinel 2A and Landsat data. It is seen that the recent El Niño has been accompanied by higher fluctuation in glacier coverage on Nevado Champara and the loss of glacier coverage on Cerro Tilata was very high during the past 16 years. Rise in snowline altitude of selected glaciers was very high after the 2015/16 El Niño. Increase in the area covered by snow and ice during the La Niña periods were not enough to cover the ice loss occurred during the previous El Niño events and the strongest El Niño in 2015/16 was followed by a significant loss of ice-covered areas in the tropical Andes. Freshwater resources in this region will be affected in the near future if the current trends in glacier decline continue. Adaptation strategies needs to be implemented to reduce the impacts of the continuing loss of glacierized on regional communities in the tropical Andean region.

Keywords

ENSO tropical Andes glacier loss snowline altitude Sentinel 2A 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Authors acknowledge Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul–FAPERGS (processo: 17/2551-0000518-0), Brazil, for research support.

References

  1. Anderson E P, Marengo J, Villalba R, Halloy S, Young B, Cordero D, Gast F, Jaimes E, Ruiz D (2011). Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. In: Herzog S K, Martínez R, Jørgensen PM, Tiessen H, eds. Climate Change and Biodiversity in the Tropical Andes. San Jose dos Campos and Paris: Inter-American Institute for Global Change Research and Scientific Committee on Problems of the EnvironmentGoogle Scholar
  2. Arnaud Y, Muller F, Vuille M, Ribstein P (2001). El Niño–Southern Oscillation (ENSO) influence on a Sajama volcano glacier (Bolivia) from 1936 to 1998 as seen from Landsat data and aerial photography. J Geophys Res, 106(D16): 17773–17784CrossRefGoogle Scholar
  3. Baraer M, Mark B G, McKenzie J M, Condom T, Bury J, Huh K I, Portocarrero C, Gómez J, Rathay S (2012). Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol, 58(207): 134–150CrossRefGoogle Scholar
  4. Baraer M, McKenzie J, Mark B G, Gordon R, Bury J, Condom T, Gomez J, Knox S, Fortner S K (2015). Contribution of groundwater to the outflow from ungauged glaciarized catchments: a multi-site study in the tropical Cordillera Blanca, Peru. Hydrol Processes, 29 (11): 2561–2581CrossRefGoogle Scholar
  5. Bradley R S, Vuille M, Diaz H F, Vergara W (2006). Threats to water supplies in the topical Andes. Science, 312(5781): 1755–1756CrossRefGoogle Scholar
  6. Bury J T, Mark B G, McKenzie J M, French A, Baraer M, Huh K I, Zapata Luyo M A, Gómez López R J (2011). Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Clim Change, 105(1–2): 179–206CrossRefGoogle Scholar
  7. Buytaert W, Celleri R, de Bievre B, Cisneros F, Wyseure G, Deckers J, Hofstede R (2006). Human impact on the hydrology of the Andean paramos. Earth Sci Rev, 79(1–2): 53–72CrossRefGoogle Scholar
  8. Carey M (2005). Living and dying with glaciers: people’s historical vulnerability to avalanches and outburst floods in Peru. Global Planet Change, 47(2–4): 122–134CrossRefGoogle Scholar
  9. Chevallier P, Pouyaud B, Suarez W, Condom T (2011). Climate change threats to environment in the tropical Andes: glaciers and water resources. Reg Environ Change, 11(S1): 179–187CrossRefGoogle Scholar
  10. Cook S J, Kougkoulos I, Edwards L A, Dortch J, Hoffmann D (2016). Glacier change and glacial lake outburst flood risk in the Bolivian Andes. The Cryosphere, 10: 2399–2413CrossRefGoogle Scholar
  11. Dangles O, Rabatel A, Kraemer M, Zeballos G, Soruco A, Jacobsen D, Anthelme F (2017). Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLoS One, 12(5): e0175814CrossRefGoogle Scholar
  12. Epstein P R, Diaz H F, Elias S, Grabherr G, Graham N E, Martens W J M, Mosley-Thompson E, Susskind J (1998). Biological and physical signs of climate change: focus on mosquito-borne diseases. Bull Am Meteorol Soc, 79(3): 409–417CrossRefGoogle Scholar
  13. Favier V, Wagnon P, Ribstein P (2004). Glaciers in the outer and inner tropics: a different behaviour but a common response to climate forcing. Geophys Res Lett, 31(16): L16403CrossRefGoogle Scholar
  14. Francou B, Vuille M, Favier V, Cáceres B (2004). New evidence for an ENSO impact on low latitude glaciers: Antizana 15, Andes of Ecuador, 0°28′S. J Geophys Res, 109(D18): D18106CrossRefGoogle Scholar
  15. Francou B, Vuille M, Wagnon P, Mendoza J, Sicart J E (2003). Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S. J Geophys Res, 108(D5): 4154CrossRefGoogle Scholar
  16. Frey H, Paul F, Strozzi T (2012). Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results. Remote Sens Environ, 124: 832–843CrossRefGoogle Scholar
  17. Garreaud R D, Vuille M, Compagnucci R, Marengo J (2009). Presentday South American climate. Palaeogeogr Palaeoclimatol Palaeoecol, 281(3–4): 180–195CrossRefGoogle Scholar
  18. Huss M, Bookhagen B, Huggel C, Jacobsen D, Bradley R S, Clague J J, Vuille M, Buytaert W, Cayan D R, Greenwood G, Mark B K, Milner A M, Weingartner R, Winder M (2017). Toward mountains without permanent snow and ice. Earths Futur, 5(5): 418–435CrossRefGoogle Scholar
  19. Mark B G, Bury J, McKenzie J M, French A, Baraer M (2010). Climate change and tropical Andean glacier recession: evaluating hydrologic changes and livelihood vulnerability in the Cordillera Blanca, Peru. Ann Assoc Am Geogr, 100(4): 794–805CrossRefGoogle Scholar
  20. Maußsion F, Gurgiser M, Großhauser M, Kaser G, Marzeion B (2015). ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru. Cryosphere, 9(4): 1663–1683CrossRefGoogle Scholar
  21. Mountain Research Initiative EDW Working Group (2015). Elevationdependent warming in mountain regions of the world. Nat Clim Chang, 5(5): 424–430Google Scholar
  22. Polk M H, Young K R, Baraer M, Mark B G, McKenzie J M, Bury J, Carey M (2017). Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru’s Cordillera Blanca. Appl Geogr, 78: 94–103CrossRefGoogle Scholar
  23. Poveda G, Rojas W, Quiñones M L, Vélez D, Mantilla R I, Ruiz D, Zulunga J S, Rua G L (2001). Coupling between annual and ENSO timescales in the malaria-climate association in Colombia. Environ Health Perspect, 109: 489–493Google Scholar
  24. Rabatel A, Bermejo A, Loarte E, Soruco A, Gomez J, Leonardini G, Vincent C, Sicart J E (2012). Can snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? J Glaciol, 58(212): 1027–1036Google Scholar
  25. Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos J L, Basantes R, Vuille M, Sicart J E, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot G, Maisincho L, Mendoza J, Menegoz M, Ramírez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013). Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere, 7 (1): 81–102CrossRefGoogle Scholar
  26. Ramírez E, Francou B, Ribstein P, Descloitres M, Guérin R, Mendoza J, Gallaire R, Pouyaud B, Jordan E (2001). Small glaciers disappearing in the tropical Andes: a case-study in Bolivia: Glaciar Chacaltaya (16°S). J Glaciol, 47(157): 187–194CrossRefGoogle Scholar
  27. Rangecroft S, Harrison S, Anderson K, Magrath J, Castel A P, Pacheco P (2013). Climate change and water resources in arid mountains: an example from the Bolivian Andes. Ambio, 42(7): 852–863CrossRefGoogle Scholar
  28. Silverio W, Jaquet J M (2005). Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sens Environ, 95(3): 342–350CrossRefGoogle Scholar
  29. Somers L D, Gordon R P, McKenzie J M, Lautz L K, Wigmore O, Glose A, Glas R, Aubry-Wake C, Mark B, Baraer M, Condom T (2016). Quantifying groundwater–surface water interactions in a proglacial valley, Cordillera Blanca, Peru. Hydrol Processes, 30(17): 2915–2929CrossRefGoogle Scholar
  30. Soruco A, Vincent C, Rabatel A, Francou B, Thibert E, Sicart J E, Condom T (2015). Contribution of glacier runoff to water resources of La Paz city, Bolivia (16oS). Ann Glaciol, 56(70): 147–154CrossRefGoogle Scholar
  31. Tad Pfeffer W, Arendt A A, Bliss A, Bolch T, Cogley J G, Gardner A S, Hagen J O, Hock R, Kaser G, Kienholz C, Miles E S, Moholdt G, Mölg N, Paul F, Radic V, Rastner P, Raup B H, Rich J, Sharp M, the Randolph Consortium (2014). The Randolph glacier inventory: a globally complete inventory of glaciers. J Glaciol, 60(221): 537–552CrossRefGoogle Scholar
  32. Thompson L G, Davis M E, Mosley-Thompson E, Beaudon E, Porter S E, Kutuzov S, Lin P N, Mikhalenko V N, Mountain K R (2017). Impacts of recent warming and the 2015/2016 El Niño on tropical Peruvian ice fields. J Geophys Res D Atmospheres, doi: 10.1002/ 2017JD026592Google Scholar
  33. Veettil B K, Bremer U F, de Souza S F, Maier É L B, Simões J C (2016b). Influence of ENSO and PDO on mountain glaciers in the outer tropics: case studies in Bolivia. Theor Appl Climatol, 125(3–4): 757–768CrossRefGoogle Scholar
  34. Veettil B K, Bremer U F, Souza S F, Maier É L B, Simões J C (2016a). Variations in annual snowline and area of an ice-covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986–2014). Geocarto Int, 31(5): 544–556CrossRefGoogle Scholar
  35. Veettil B K, de Souza S F, Simões J C, Ruiz-Pereira S F (2017d). Decadal evolution of glaciers and glacial lakes in the Apolobamba- Carabaya region, tropical Andes (Bolivia-Peru). Geogr Ann, Ser A, 99(3): 193–206CrossRefGoogle Scholar
  36. Veettil B K, Kamp U (2017). Remote sensing of glaciers in the tropical Andes: a review. Int J Remote Sens, 38(23): 7101–7137CrossRefGoogle Scholar
  37. Veettil B K, Maier É L B, Bremer U F, de Souza S F (2014). Combined influence of PDO and ENSO on northern Andean glaciers: a case study on the Cotopaxi ice-covered volcano, Ecuador. Clim Dyn, 43 (12): 3439–3448CrossRefGoogle Scholar
  38. Veettil B K, Wang S, Bremer U F, de Souza S F, Simões J C (2017b). Recent trends in annual snowline variations in the northern wet outer tropics: case studies from southern Cordillera Blanca, Peru. Theor Appl Climatol, 129(1–2): 213–227CrossRefGoogle Scholar
  39. Veettil B K, Wang S, de Souza S F, Bremer U F, Simões J C (2017a). Glacier monitoring and glacier-climate interactions in the tropical Andes: a review. J S Am Earth Sci, 77: 218–246CrossRefGoogle Scholar
  40. Veettil B K, Wang S, Simões J C, Pereira S R P, Souza S F (2017c). Regional climate forcing and topographic influence on glacier shrinkage: eastern cordilleras of Peru. Int J Climatol, doi: 10.1002/joc.5226Google Scholar
  41. Vergara W, Deeb A M, Valencia A M, Bradley R S, Francou B, Zarzar A, Grünwaldt A, Haeussling S M (2007). Economic impacts of rapid glacier retreat in the Andes. Eos (Wash DC), 88(25): 261–264CrossRefGoogle Scholar
  42. Vuille M, Carey M, Huggel C, Buytaert W, Rabatel A, Jacobson D, Soruco A, Villacis M, Yarleque C, Timm O E, Condom T, Salzmann N, Sicart J E (2018). Rapid decline of snow and ice in the tropical Andes–impacts, uncertainties and challenges ahead. Earth Sci Rev, 176: 195–213CrossRefGoogle Scholar
  43. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark B G, Bradley R S (2008). Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev, 89(3–4): 79–96CrossRefGoogle Scholar
  44. Zemp M, Frey H, Gärtner-Roer I, Nussbaumer S U, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrom A P, Anderson B, Bajracharya S, Baroni C, Braun L N, Cáceres B E, Casassa G, Cobos G, Dávila L R, Delgado Granados H, Demuth M N, Espizua L, Fischer A, Fujita K, Gadek B, Ghazanfar A, Hagen J O, Holmlund P, Karimi N, Li Z, Pelto M, Pitte P, Popovnin V V, Portocarrero C A, Prinz R, Sangewar C V, Severskiy I, Sigurdsson O, Soruco A, Usubaliev R, Vincent C (2015). Historically unprecedented global glacier decline in the early 21st century. J Glaciol, 61(228): 745–762CrossRefGoogle Scholar
  45. Zhang G, Yao T, Piao S, Bolch T, Xie H, Chen D, Gao Y, O’Reilly CM, Shum C K, Yang K, Yi S, Lei Y, Wang W, He Y, Shang K, Yang X, Zhang H (2017). Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys Res Lett, 44(1): 252–260CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bijeesh Kozhikkodan Veettil
    • 1
    • 2
    Email author
  • Jefferson Cardia Simões
    • 3
  1. 1.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Centro Polar e ClimáticoUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations