Advertisement

Integrating logistic regression with ant colony optimization for smart urban growth modelling

  • Shifa MaEmail author
  • Feng Liu
  • Chunlei Ma
  • Xuemin Ouyang
Research Article
  • 10 Downloads

Abstract

Urban growth does not always strictly follow historical trends; the government may reshape urban growth patterns with considerations of ecological conservation or other plans. Both urban dynamic rules and landscape characteristics are the two main factors influencing the spatial patterns of cities, and obtaining an optimized spatial pattern is very important for sustainable urban growth. Therefore, in this study, we integrated logistic regression (LR) with the ant colony optimization (ACO) model to analyze the optimal scenario for smart urban growth. The LR model was used to discuss the relationship between urban patterns and environmental variables such as topography, development centers, and traffic conditions. Then, the urban growth probability was generated using the parameters obtained from LR. The ACO model was further integrated to optimize urban land allocation, which can meet the requirement of high growth probability, and a connected and compacted landscape pattern. This can solve the problem of urban land only being allocated by LR from being distributed fragmentarily in the space. With this integrated model, Guangzhou City, a rapidly developing area in China, was selected as a case study. The urban patterns derived from LR, as well as a simulation scenario using logistic regression-based cellular automata (LR-CA), were used in the comparison. Six landscape metrics were chosen to validate the performance of this proposed model at the pattern level. The results show that the LR-ACO model has a better performance in urban land allocation. This study demonstrated that models that couple dynamic rules and planning objectives can provide plausible scenarios for smart urban growth planning.

Keywords

logistic regression ant colony optimization smart growth urban planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their suggestions and comments. This research was supported by the National Natural Science Foundation of China (Grant No. 41901311).

References

  1. Abbott C, Margheim J (2008). Imagining Portland’s urban growth boundary: planning regulation as cultural icon. J Am Plann Assoc, 74(2): 196–208CrossRefGoogle Scholar
  2. Aerts J C J H, Eisinger E, Heuvelink G B M, Stewart T J (2003). Using linear integer programming for multi-site land-use allocation. Geogr Anal, 35(2): 148–169CrossRefGoogle Scholar
  3. Aljoufie M, Zuidgeest M, Brussel M, van Vliet J, van Maarseveen M (2013). A cellular automata-based land use and transport interaction model applied to Jeddah, Saudi Arabia. Landsc Urban Plan, 112: 89–99CrossRefGoogle Scholar
  4. Cao K, Batty M, Huang B, Liu Y, Yu L, Chen J (2011). Spatial multi-objective land use optimization: extensions to the non-dominated sorting genetic algorithm-II. Int J Geogr Inf Sci, 25(12): 1949–1969CrossRefGoogle Scholar
  5. Cao K, Huang B, Wang S, Lin H (2012). Sustainable land use optimization using boundary-based fast genetic algorithm. Comput Environ Urban Syst, 36(3): 257–269CrossRefGoogle Scholar
  6. Cerreta M, De Toro P (2012). Urbanization suitability maps: a dynamic spatial decision support system for sustainable land use. Earth Syst Dynam, 3(2): 157–171CrossRefGoogle Scholar
  7. Chen Y M, Li X, Liu X P, Liu Y L (2010). An agent based model for optimal land allocation (Agent LA) with a contiguity constraint. Int J Geogr Inf Sci, 24(8): 1269–1288CrossRefGoogle Scholar
  8. Clarke K C, Gaydos L J (1998). Loose-coupling a cellular automata model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. Int J Geogr Inf Sci, 12(7): 699–714CrossRefGoogle Scholar
  9. Dorigo M, Maniezzo V, Colorni A (1996). The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern A Syst Hum, 26(1): 1–13Google Scholar
  10. Feng Y, Liu Y, Tong X, Liu M, Deng S (2011). Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landsc Urban Plan, 102(3): 188–196CrossRefGoogle Scholar
  11. Godschalk D R (2004). Land use planning challenges: coping with conflicts in visions of sustainable development and livable communities. J Am Plann Assoc, 70(1): 5–13CrossRefGoogle Scholar
  12. Gounaridis D, Chorianopoulos I, Koukoulas S (2018). Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: the case of Athens. Appl Geogr, 90: 134–144CrossRefGoogle Scholar
  13. Hess P M, Sorensen A (2015). Compact, concurrent, and contiguous: smart growth and 50 years of residential planning in the Toronto region. Urban Geogr, 36(1): 127–151CrossRefGoogle Scholar
  14. Holzkämper A, Seppelt R (2007). A generic tool for optimizing land-use patterns and landscape structures. Environ Model Softw, 22(12): 1801–1804CrossRefGoogle Scholar
  15. Huang K, Liu X, Li X, Liang J, He S (2013). An improved artificial immune system for seeking the Pareto front of land-use allocation problem in large areas. Int J Geogr Inf Sci, 27(5): 922–946CrossRefGoogle Scholar
  16. Jantz C A, Goetz S J, Donato D, Claggett P (2010). Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Comput Environ Urban Syst, 34(1): 1–16CrossRefGoogle Scholar
  17. Jokar Arsanjani J, Helbich M, Kainz W, Darvishi Boloorani A (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs Geoinf, 21: 265–275CrossRefGoogle Scholar
  18. Lambin E F, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci USA, 108(9): 3465–3472CrossRefGoogle Scholar
  19. Lawler J J, Lewis D J, Nelson E, Plantinga A J, Polasky S, Withey J C, Helmers D P, Martinuzzi S, Pennington D, Radeloff V C (2014). Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci USA, 111(20): 7492–7497CrossRefGoogle Scholar
  20. Li F, Gong Y, Cai L, Sun C, Chen Y, Liu Y, Jiang P (2018). Sustainable land-use allocation: a multiobjective particle swarm optimization model and application in Changzhou, China. J Urban Plann Dev, 144(2): 04018010CrossRefGoogle Scholar
  21. Li X, Chen Y, Liu X, Li D, He J (2011). Concepts, methodologies, and tools of an integrated geographical simulation and optimization system. Int J Geogr Inf Sci, 25(4): 633–655CrossRefGoogle Scholar
  22. Li X, He J, Liu X (2009). Intelligent GIS for solving high-dimensional site selection problems using ant colony optimization techniques. Int J Geogr Inf Sci, 23(4): 399–416CrossRefGoogle Scholar
  23. Li X, Lao C, Liu X, Chen Y (2011). Coupling urban cellular automata with ant colony optimization for zoning protected natural areas under a changing landscape. Int J Geogr Inf Sci, 25(4): 575–593CrossRefGoogle Scholar
  24. Li X, Yeh A G (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int J Geogr Inf Sci, 16(4): 323–343CrossRefGoogle Scholar
  25. Ligmann-Zielinska A, Church R, Jankowski P (2008). Spatial optimization as a generative technique for sustainable multi-objective land-use allocation. Int J Geogr Inf Sci, 22(6): 601–622CrossRefGoogle Scholar
  26. Liu R, Zhang K, Zhang Z, Borthwick A G L (2014). Land-use suitability analysis for urban development in Beijing. J Environ Manage, 145: 170–179CrossRefGoogle Scholar
  27. Liu Y, Wang H, Ji Y, Liu Z, Zhao X (2012). Land use zoning at the county level based on a multi-objective particle swarm optimization algorithm. Int J Environ Res Public Health, 9(8): 2801–2826CrossRefGoogle Scholar
  28. Ma S, Li X, Cai Y (2017). Delimiting the urban growth boundaries with a modified ant colony optimization model. Comput Environ Urban Syst, 62: 146–155CrossRefGoogle Scholar
  29. Masoomi Z, Mesgari M S, Hamrah M (2013). Allocation of urban land uses by multi-objective particle swarm optimization algorithm. Int J Geogr Inf Sci, 27(3): 542–566CrossRefGoogle Scholar
  30. Mitsova D, Shuster W, Wang X (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc Urban Plan, 99(2): 141–153CrossRefGoogle Scholar
  31. Olsen L M, Dale V H, Foster T (2007). Landscape patterns as indicators of ecological change at Fort Benning, Georgia, USA. Landsc Urban Plan, 79(2): 137–149CrossRefGoogle Scholar
  32. Persson C (2013). Deliberation or doctrine? Land use and spatial planning for sustainable development in Sweden. Land Use Policy, 34: 301–313CrossRefGoogle Scholar
  33. Klepeis P, Turner II B L (2001). Integrated land history and global change science: the example of the Southern Yucatán Peninsular Region project. Land Use Policy, 18(1): 27–39CrossRefGoogle Scholar
  34. Poelmans L, Van Rompaey A (2010). Complexity and performance of urban expansion models. Comput Environ Urban Syst, 34(1): 17–27CrossRefGoogle Scholar
  35. Rindfuss R R, Walsh S J, Turner B L, Fox J, Mishra V (2004). Developing a science of land change: challenges and methodological issues. Proc Natl Acad Sci USA, 101(39): 13976–13981CrossRefGoogle Scholar
  36. Santé I, García A M, Miranda D, Crecente R (2010). Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc Urban Plan, 96(2): 108–122CrossRefGoogle Scholar
  37. Santé-Riveira I, Boullón-Magán M, Crecente-Maseda R, Miranda-Barrós D (2008). Algorithm based on simulated annealing for land-use allocation. Comput Geosci, 34(3): 259–268CrossRefGoogle Scholar
  38. Silva E A, Ahern J, Wileden J (2008). Strategies for landscape ecology: an application using cellular automata models. Prog Plann, 70(4): 133–177CrossRefGoogle Scholar
  39. Stewart T J, Janssen R (2014). A multiobjective GIS-based land use planning algorithm. Comput Environ Urban Syst, 46: 25–34CrossRefGoogle Scholar
  40. Stewart T J, Janssen R, van Herwijnen M (2004). A genetic algorithm approach to multiobjective land use planning. Comput Oper Res, 31(14): 2293–2313CrossRefGoogle Scholar
  41. Tudes S, Yigiter N D (2010). Preparation of land use planning model using GIS based on AHP: case study Adana-Turkey. Bull Eng Geol Environ, 69(2): 235–245CrossRefGoogle Scholar
  42. Turner M A (2007). A simple theory of smart growth and sprawl. J Urban Econ, 61(1): 21–44CrossRefGoogle Scholar
  43. Verburg P H, de Koning G H J, Kok K, Veldkamp A, Bouma J (1999). A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol Modell, 116(1): 45–61CrossRefGoogle Scholar
  44. Wei Y, Ye X (2014). Urbanization, urban land expansion and environmental change in China. Stochastic Environ Res Risk Assess, 28(4): 757–765CrossRefGoogle Scholar
  45. Wu F (2002). Calibration of stochastic cellular automata: the application to rural-urban land conversions. Int J Geogr Inf Sci, 16(8): 795–818CrossRefGoogle Scholar
  46. Wu F, Webster C J (1998). Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ Plann B Plann Des, 25(1): 103–126CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Architecture and Urban PlanningGuangdong University of TechnologyGuangzhouChina
  2. 2.Shenzhen Longhua District Development Research InstituteShenzhenChina
  3. 3.School of Marine SciencesSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations