Frontiers of Earth Science

, Volume 12, Issue 4, pp 739–749 | Cite as

The uncertainty analysis of the MODIS GPP product in global maize croplands

  • Xiaojuan Huang
  • Mingguo MaEmail author
  • Xufeng Wang
  • Xuguang Tang
  • Hong Yang
Research Article


Gross primary productivity (GPP) is very important in the global carbon cycle. Currently, the newly released estimates of 8-day GPP at 500 m spatial resolution (Collection 6) are provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Science Team for the global land surface via the improved light use efficiency (LUE) model. However, few studies have evaluated its performance. In this study, the MODIS GPP products (GPPMOD) were compared with the observed GPP (GPPEC) values from site-level eddy covariance measurements over seven maize flux sites in different areas around the world. The results indicate that the annual GPPMOD was underestimated by 6%‒58% across sites. Nevertheless, after incorporating the parameters of the calibrated LUE, the measurements of meteorological variables and the reconstructed Fractional Photosynthetic Active Radiation (FPAR) into the GPPMOD algorithm in steps, the accuracies of GPPMOD estimates were improved greatly, albeit to varying degrees. The differences between the GPPMOD and the GPPEC were primarily due to the magnitude of LUE and FPAR. The underestimate of maize cropland LUE was a widespread problem which exerted the largest impact on the GPPMOD algorithm. In American and European sites, the performance of the FPAR exhibited distinct differences in capturing vegetation GPP during the growing season due to the canopy heterogeneity. In addition, at the DE-Kli site, the GPPMOD abruptly produced extreme low values during the growing season because of the contaminated FPAR from a continuous rainy season. After correcting the noise of the FPAR, the accuracy of the GPPMOD was improved by approximately 14%. Therefore, it is crucial to further improve the accuracy of global GPPMOD, especially for the maize crop ecosystem, to maintain food security and better understand global carbon cycle.


MODIS GPP eddy covariance maize cropland validation improvement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is jointly supported by the National Natural Science Foundation of China (Grant No. 41771453), National Key Technology R&D Program of China (2016YFC0500106), Special Project of Science and Technology Basic Work (2014FY210800-5), and the Fundamental Research Funds for the Central Universities in China (SWU116088). We are grateful to the availability of the tower flux data of maize sites from Fluxnet and ChinaFlux.


  1. Chen B Z, Black T A, Coops N C, Hilker T, Trofymow J A, Morgenstern K (2009) Assessing tower flux footprint climatology and scaling between remotely sensed and eddy covariance measurements. Boundary-Layer Meteorol, 130(2): 137–167CrossRefGoogle Scholar
  2. Chen J, Jönsson P, Tamura M, Gu Z, Matsushita B, Eklundh L (2004) A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens Environ, 91 (3–4): 332–344CrossRefGoogle Scholar
  3. Chen T, van der Werf G R, Gobron N, Moors E J, Dolman A J (2014) Global cropland monthly gross primary production in the year 2000. Biogeosciences, 11(14): 2365–2366CrossRefGoogle Scholar
  4. Cohen W B, Maiersperger T K, Yang Z Q, Gower S T, Turner D P, Ritts W D, Berterretche M, Running S W (2003) Comparisons of land cover and LAI estimates derived from ETM plus and MODIS for four sites in North America: a quality assessment of 2000/2001 provisional MODIS products. Remote Sens Environ, 88(3): 233–255CrossRefGoogle Scholar
  5. Coops N C, Black T A, Jassal R S, Trofymow J A, Morgenstern K (2007) Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand. Remote Sens Environ, 107(3): 385–401CrossRefGoogle Scholar
  6. Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis K J, Elbers J A, Goldstein A H, Grelle A, Granier A, Guðmundsson J, Hollinger D, Kowalski A S, Katul G, Law B E, Malhi Y, Meyers T, Monson R K, Munger JW, Oechel W, Paw U K T, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric Meteorol, 113(1–4): 53–74CrossRefGoogle Scholar
  7. Fensholt R, Sandholt I, Rasmussen M S (2004) Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semiarid environment using in situ measurements. Remote Sens Environ, 91(3–4): 490–507CrossRefGoogle Scholar
  8. Fu G, Shen Z, Zhang X, Shi P, He Y, ZhangY, Sun W, Wu J, Zhou Y, Pan X (2012) Calibration of MODIS-based gross primary production over an alpine meadow on the Tibetan Plateau. Can J Rem Sens, 38(2): 157–168CrossRefGoogle Scholar
  9. Gebremichael M, Barros A P (2006) Evaluation of MODIS gross primary productivity (GPP) in tropical monsoon regions. Remote Sens Environ, 100(2): 150–166CrossRefGoogle Scholar
  10. Gilmanov T G, Aires L, Barcza Z, Baron V S, Belelli L, Beringer J, Billesbach D, Bonal D, Bradford J, Ceschia E, Cook D, Corradi C, Frank A, Gianelle D, Gimeno C, Gruenwald T, Guo H, Hanan N, Haszpra L, Heilman J, Jacobs A, Jones M B, Johnson D A, Kiely G, Li S, Magliulo V, Moors E, Nagy Z, Nasyrov M, Owensby C, Pinter K, Pio C, Reichstein M, Sanz M J, Scott R, Soussana J F, Stoy P C, Svejcar T, Tuba Z, Zhou G (2010) Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements. Rangeland Ecol Manag, 63 (1): 16–39CrossRefGoogle Scholar
  11. Gitelson A A, Vina A, Masek J G, Verma S B, Suyker A E (2008) Synoptic monitoring of gross primary productivity of maize using Landsat data. IEEE Geosci Remote Sens Lett, 5(2): 133–137CrossRefGoogle Scholar
  12. Goulden M L, Munger J W, Fan S, Daube B C, Wofsy S C (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Change Biol, 2(3): 169–182CrossRefGoogle Scholar
  13. Hansen M C, Defries R S, Townshend J R G, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens, 21(6–7): 1331–1364CrossRefGoogle Scholar
  14. Heinsch F A, Zhao M, Running SW, Kimball J S, Nemani R R, Davis K J, Bolstad P V, Cook B D, Desai A R, Ricciuto D M, Law B E, Oechel W C, Kwon H, Luo H, Wofsy S C, Dunn A L, Munge J W, Baldocchi D D, Xu L, Hollinger D Y, Richardson A D, Stoy P C, Siqueira M B S, Monson R K, Burns S P, Flanagan L B (2006) Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans Geosci Remote Sens, 44(7): 1908–1925CrossRefGoogle Scholar
  15. Jung M, Reichstein M, Margolis H A, Cescatti A, Richardson A D, Arain M A, Arneth A, Bernhofer C, Bonal D, Chen J, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law B E, Lindroth A, Merbold L, Montagnani L, Moors E J, Papale D, Sottocornola M, Vaccari F, Williams C (2015) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res, 116(G3): 245–255Google Scholar
  16. Lai L, Huang X, Yang H, Chuai X, Zhang M, Zhong T, Chen Z, Chen Y, Wang X, Thompson J R (2016) Carbon emissions from land-use change and management in China between 1990 and 2010. Sci Adv, 2(11): e1611063CrossRefGoogle Scholar
  17. Lasslop G, Reichstein M, Papale D, Richardson A D, Arneth A, Barr A, Stoy P, Wohlfahrt G (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob Change Biol, 16(1): 187–208CrossRefGoogle Scholar
  18. Lehuger S, Gabrielle B, Cellier P, Loubet B, Roche R, Béziat P, Ceschia E, Wattenbach M (2010). Predicting the net carbon exchanges of crop rotations in Europe with an agro-ecosystem model. Agric Ecosyst Environ, 139(3): 384–395CrossRefGoogle Scholar
  19. Ma M, Veroustraete F (2006) Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China. Advances in Space Research, 37(4): 835–840CrossRefGoogle Scholar
  20. Monteith J L (1972) Solar-radiation and productivity in tropical ecosystems. J Appl Ecol, 9(3): 747–766CrossRefGoogle Scholar
  21. Peng Y, Gitelson A A (2011) Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric Meteorol, 151(9): 1267–1276CrossRefGoogle Scholar
  22. Potter C S, Randerson J T, Field C B, Matson P A, Vitousek P M, Mooney H A, Klooster S A (1993) Terrestrial ecosystem production- A process model-based on global satellite and surface data. Global Biogeochem Cycles, 7(4): 811–841CrossRefGoogle Scholar
  23. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol, 11(9): 1424–1439CrossRefGoogle Scholar
  24. Running S W, Baldocchi D D, Turner D P, Gower S T, Bakwin P S, Hibbard K A (1999) A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens Environ, 70(1): 108–127CrossRefGoogle Scholar
  25. Running S W, Nemani R R, Heinsch F A, Zhao M S, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 54(6): 547–560CrossRefGoogle Scholar
  26. Sun X, Zhu Z, Wen X, Yuan G, Yu G (2006) The impact of averaging period on eddy fluxes observed at ChinaFLUX sites. Agric Meteorol, 137(3–4): 188–193CrossRefGoogle Scholar
  27. Tang X, Li H, Huang N, Li X, Xu X, Ding Z, Xie J (2015) A comprehensive assessment of MODIS-derived GPP for forest ecosystems using the site-level FLUXNET database. Environ Earth Sci, 74(7): 5907–5918CrossRefGoogle Scholar
  28. Tang X, Ma M, Ding Z, Xu X, Yao L, Huang X, Gu Q, Song L (2017) Remotely monitoring ecosystem water use efficiency of grassland and cropland in China’s arid and semi-arid regions with MODIS data. Remote Sens, 9(6): 616CrossRefGoogle Scholar
  29. Turner D P, Ritts W D, Cohen W B, Gower S T, Running S W, Zhao M, Costa M H, Kirschbaum A A, Ham J M, Saleska S R, Ahl D E (2006) Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens Environ, 102(3–4): 282–292CrossRefGoogle Scholar
  30. Turner D P, Ritts W D, Cohen W B, Gower S T, Zhao M, Running S W, Wofsy S C, Urbanski S, Dunn A L, Munger J W (2003) Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validatio. Remote Sens Environ, 88(3): 256–270CrossRefGoogle Scholar
  31. Verma S B, Dobermann A, Cassman K G, Walters D T, Knops J M, Arkebauer T J, Suyker A E, Burba G G, Amos B, Yang H, Ginting D, Hubbard K G, Gitelson A A, Walter-Shea E A (2005) Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agric Meteorol, 131(1–2): 77–96CrossRefGoogle Scholar
  32. Wang X, Ma M, Li X, Song Y, Tan J, Huang G, Zhang Z, Zhao T, Feng J, Ma Z,WeiW, Bai Y (2013) Validation of MODIS-GPP product at 10 flux sites in northern China. Int J Remote Sens, 34(2): 587–599CrossRefGoogle Scholar
  33. Xiao J, Davis K J, Urban N M, Keller K, Saliendra N Z (2011) Upscaling carbon fluxes from towers to the regional scale: influence of parameter variability and land cover representation on regional flux estimates. J Geophys Res Biogeosci, 116(G3): 115–132CrossRefGoogle Scholar
  34. Zhang M, Huang X, Chuai X, Yang H, Lai L, Tan J (2015) Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: a spatial-temporal perspective. Sci Rep, 5(1): 10233CrossRefGoogle Scholar
  35. Zhang Y, Yu Q, Jiang J, Tang Y (2008) Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau. Glob Change Biol, 14(4): 757–767CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaojuan Huang
    • 1
    • 2
  • Mingguo Ma
    • 1
    • 2
    Email author
  • Xufeng Wang
    • 3
  • Xuguang Tang
    • 1
    • 2
  • Hong Yang
    • 4
  1. 1.Chongqing Engineering Research Center for Remote Sensing Big Data ApplicationSouthwest UniversityChongqingChina
  2. 2.Research Base of Karst Eco-environments at Nanchuan in Chongqing, Ministry of Natural Resources, School of Geographical SciencesSouthwest UniversityChongqingChina
  3. 3.Northwest Institute of Eco-environment and ResourcesChinese Academy of SciencesLanzhouChina
  4. 4.Department of Geography and Environmental ScienceUniversity of ReadingReadingUK

Personalised recommendations