Advertisement

SrTiO3/TiO2 heterostructure nanowires with enhanced electron-hole separation for efficient photocatalytic activity

  • Liuxin Yang
  • Zhou Chen
  • Jian Zhang
  • Chang-An WangEmail author
Research Article
  • 2 Downloads

Abstract

Heterostructure is an effective strategy to facilitate the charge carrier separation and promote the photocatalytic performance. In this paper, uniform SrTiO3 nanocubes were in-situ grown on TiO2 nanowires to construct heterojunctions. The composites were prepared by a facile alkaline hydrothermal method and an in-situ deposition method. The obtained SrTiO3/TiO2 exhibits much better photocatalytic activity than those of pure TiO2 nanowires and commercial TiO2 (P25) evaluated by photocatalytic water splitting and decomposition of Rhodamine B (RB). The hydrogen generation rate of SrTiO3/TiO2 nanowires could reach 111.26 mmol·g−1·h−1 at room temperature, much better than those of pure TiO2 nanowires (44.18 mmol·g−1·h−1)and P25 (35.77 mmol·g−1·h−1). The RB decomposition rate of SrTiO3/TiO2 is 7.2 times of P25 and 2.4 times of pure TiO2 nanowires. The photocatalytic activity increases initially and then decreases with the rising content of SrTiO3, suggesting an optimum SrTiO3/TiO2 ratio that can further enhance the catalytic activity. The improved photocatalytic activity of SrTiO3/TiO2 is principally attributed to the enhanced charge separation deriving from the SrTiO3/TiO2 heterojunction.

Keywords

photocatalytic SrTiO3/TiO2 nanowire heterostructure nanocomposite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51572145).

References

  1. [1]
    Xie Z, Feng Y, Wang F, et al. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Applied Catalysis B: Environmental, 2018, 229: 96–104CrossRefGoogle Scholar
  2. [2]
    Sang Y, Zhao Z, Zhao M, et al. From UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Advanced Materials, 2015, 27(2): 363–369CrossRefGoogle Scholar
  3. [3]
    Dong S, Ding X, Guo T, et al. Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants. Chemical Engineering Journal, 2017, 316: 778–789CrossRefGoogle Scholar
  4. [4]
    Sun Q, Wang N, Yu J, et al. A hollow porous CdS photocatalyst. Advanced Materials, 2018, 30(45): 1804368CrossRefGoogle Scholar
  5. [5]
    Shi R, Cao Y, Bao Y, et al. Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Advanced Materials, 2017, 29(27): 1700803CrossRefGoogle Scholar
  6. [6]
    Wei R B, Huang Z L, Gu G H, et al. Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 231: 101–107CrossRefGoogle Scholar
  7. [7]
    Zhou M, Wang S, Yang P, et al. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catalysis, 2018, 8(6): 4928–4936CrossRefGoogle Scholar
  8. [8]
    Jin J, Yu J, Guo D, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small, 2015, 11(39): 5262–5271CrossRefGoogle Scholar
  9. [9]
    Kuehnel M F, Orchard K L, Dalle K E, et al. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. Journal of the American Chemical Society, 2017, 139(21): 7217–7223CrossRefGoogle Scholar
  10. [10]
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38CrossRefGoogle Scholar
  11. [11]
    Zhang P, Yu L, Lou X W D. Construction of heterostructured Fe2O3-TiO2 microdumbbells for photoelectrochemical water oxidation. Angewandte Chemie International Edition, 2018, 57 (46): 15076–15080CrossRefGoogle Scholar
  12. [12]
    Gao C, Wei T, Zhang Y, et al. A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Advanced Materials, 2019, 31 (8): 1806596 (6 pages)CrossRefGoogle Scholar
  13. [13]
    Elbanna O, Zhu M, Fujitsuka M, et al. Black phosphorus sensitized TiO2 mesocrystal photocatalyst for hydrogen evolution with visible and near-infrared light irradiation. ACS Catalysis, 2019, 9(4): 3618–3626CrossRefGoogle Scholar
  14. [14]
    Huang Z, Sun Q, Lv K, et al. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2. Applied Catalysis B: Environmental, 2015, 164: 420–427CrossRefGoogle Scholar
  15. [15]
    Wang Y, Yang C, Chen A, et al. Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Applied Catalysis B: Environmental, 2019, 251: 57–65CrossRefGoogle Scholar
  16. [16]
    Woo S J, Choi S, Kim S Y, et al. Highly selective and durable photochemical CO2 reduction by molecular Mn(I) catalyst fixed on a particular dye-sensitized TiO2 platform. ACS Catalysis, 2019, 9(3): 2580–2593CrossRefGoogle Scholar
  17. [17]
    Xu H, Ouyang S, Liu L, et al. Recent advances in TiO2-based photocatalysis. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(32): 12642–12661CrossRefGoogle Scholar
  18. [18]
    Meng A, Zhang J, Xu D, et al. Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets. Applied Catalysis B: Environmental, 2016, 198: 286–294CrossRefGoogle Scholar
  19. [19]
    Ge M, Li Q, Cao C, et al. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advanced Science, 2017, 4 (1): 1600152CrossRefGoogle Scholar
  20. [20]
    Lu Q, Lu Z, Lu Y, et al. Photocatalytic synthesis and photovoltaic application of Ag-TiO2 nanorod composites. Nano Letters, 2013, 13(11): 5698–5702CrossRefGoogle Scholar
  21. [21]
    Zhu K, Neale N R, Miedaner A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters, 2007, 7(1): 69–74CrossRefGoogle Scholar
  22. [22]
    Crake A, Christoforidis K C, Kafizas A, et al. CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV-vis irradiation. Applied Catalysis B: Environmental, 2017, 210: 131–140CrossRefGoogle Scholar
  23. [23]
    Wang H, Liu H, Wang S, et al. Influence of tunable pore size on photocatalytic and photoelectrochemical performances of hierarchical porous TiO2/C nanocomposites synthesized via dual-templating. Applied Catalysis B: Environmental, 2018, 224: 341–349CrossRefGoogle Scholar
  24. [24]
    Burek B O, Bahnemann D W, Bloh J Z. Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catalysis, 2019, 9(1): 25–37CrossRefGoogle Scholar
  25. [25]
    Miyoshi A, Vequizo J J M, Nishioka S, et al. Nitrogen/fluorine-codoped rutile titania as a stable oxygen-evolution photocatalyst for solar-driven Z-scheme water splitting. Sustainable Energy & Fuels, 2018, 2(9): 2025–2035CrossRefGoogle Scholar
  26. [26]
    Wenderich K, Mul G. Methods, mechanism, and applications of photodeposition in photocatalysis: A review. Chemical Reviews, 2016, 116(23): 14587–14619CrossRefGoogle Scholar
  27. [27]
    Li K, Peng B, Peng T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catalysis, 2016, 6(11): 7485–7527CrossRefGoogle Scholar
  28. [28]
    Reza Gholipour M, Dinh C T, Béland F, et al. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale, 2015, 7(18): 8187–8208CrossRefGoogle Scholar
  29. [29]
    Wang W, Xu D, Cheng B, et al. Hybrid carbon@TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(10): 5020–5029CrossRefGoogle Scholar
  30. [30]
    Li L, Yan J, Wang T, et al. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nature Communications, 2015, 6(1): 5881 (10 pages)CrossRefGoogle Scholar
  31. [31]
    Yuan Y P, Ruan L W, Barber J, et al. Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy & Environmental Science, 2014, 7(12): 3934–3951CrossRefGoogle Scholar
  32. [32]
    Xu Y, Li A, Yao T, et al. Strategies for efficient charge separation and transfer in artificial photosynthesis of solar fuels. Chem-SusChem, 2017, 10(22): 4277–4305Google Scholar
  33. [33]
    Chen S, Thind S S, Chen A. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochemistry Communications, 2016, 63: 10–17CrossRefGoogle Scholar
  34. [34]
    Lu Y, Cheng X, Tian G, et al. Hierarchical CdS/m-TiO2/G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability. Nano Energy, 2018, 47: 8–17CrossRefGoogle Scholar
  35. [35]
    Ge J F, Liu Z L, Liu C, et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nature Materials, 2015, 14(3): 285–289CrossRefGoogle Scholar
  36. [36]
    Mu L, Zhao Y, Li A, et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photo-catalytic water splitting. Energy & Environmental Science, 2016, 9(7): 2463–2469CrossRefGoogle Scholar
  37. [37]
    Song Q, Yu T L, Lou X, et al. Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface. Nature Communications, 2019, 10(1): 758CrossRefGoogle Scholar
  38. [38]
    Lu X, Jiang P, Bao X. Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector. Nature Communications, 2019, 10: 138CrossRefGoogle Scholar
  39. [39]
    Ji L, McDaniel M D, Wang S, et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nature Nanotechnology, 2015, 10(1): 84–90CrossRefGoogle Scholar
  40. [40]
    Wang Y, Zhang D, Wen C, et al. Processing and characterization of SrTiO3-TiO2 nanoparticle-nanotube heterostructures on titanium for biomedical applications. ACS Applied Materials & Interfaces, 2015, 7(29): 16018–16026CrossRefGoogle Scholar
  41. [41]
    Jiao Z, Chen T, Xiong J, et al. Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. Scientific Reports, 2013, 3 (1): 2720CrossRefGoogle Scholar
  42. [42]
    Kang Q, Wang T, Li P, et al. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angewandte Chemie International Edition, 2015, 54(3): 841–845CrossRefGoogle Scholar
  43. [43]
    Zhao W, Liu N, Wang H, et al. Sacrificial template synthesis of core-shell SrTiO3/TiO2 heterostructured microspheres photocatalyst. Ceramics International, 2017, 43(6): 4807–4813CrossRefGoogle Scholar
  44. [44]
    Cao T, Li Y, Wang C, et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir, 2011, 27(6): 2946–2952CrossRefGoogle Scholar
  45. [45]
    Zhang J, Bang J H, Tang C, et al. Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano, 2010, 4(1): 387–395CrossRefGoogle Scholar
  46. [46]
    Vasquez R P. SrTiO3 by XPS. Surface Science Spectra, 1992, 1(1): 129–135CrossRefGoogle Scholar
  47. [47]
    Diebold U, Madey T E. TiO2 by XPS. Surface Science Spectra, 1996, 4(3): 227–231CrossRefGoogle Scholar
  48. [48]
    Tu W, Zhou Y, Zou Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Advanced Materials, 2014, 26(27): 4607–4626CrossRefGoogle Scholar
  49. [49]
    Xu T, Wang S, Li L, et al. Dual templated synthesis of tri-modal porous SrTiO3/TiO2@carbon composites with enhanced photocatalytic activity. Applied Catalysis A: General, 2019, 575: 132–141CrossRefGoogle Scholar
  50. [50]
    Wei Y, Wang J, Yu R, et al. Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angewandte Chemie International Edition, 2019, 58(5): 1422–1426CrossRefGoogle Scholar
  51. [51]
    Zhou J, Yin L, Zha K, et al. Hierarchical fabrication of heterojunctioned SrTiO3/TiO2 nanotubes on 3D microporous Ti substrate with enhanced photocatalytic activity and adhesive strength. Applied Surface Science, 2016, 367: 118–125CrossRefGoogle Scholar
  52. [52]
    Wu K, Zhu H, Liu Z, et al. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. Journal of the American Chemical Society, 2012, 134(25): 10337–10340CrossRefGoogle Scholar
  53. [53]
    Yang J, Yan H, Wang X, et al. Roles of co-catalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. Journal of Catalysis, 2012, 290(6): 151–157CrossRefGoogle Scholar
  54. [54]
    Wu K, Chen Z, Lv H, et al. Hole removal rate limits photodriven H2 generation efficiency in CdS-Pt and CdSe/CdS-Pt semiconductor nanorod-metal tip heterostructures. Journal of the American Chemical Society, 2014, 136(21): 7708–7716CrossRefGoogle Scholar
  55. [55]
    Kumar S, Parlett C M A, Isaacs M A, et al. Facile synthesis of hierarchical Cu2O nanocubes as visible light photocatalysts. Applied Catalysis B: Environmental, 2016, 189: 226–232CrossRefGoogle Scholar
  56. [56]
    Stylidi M, Kondarides D I, Verykios X E. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 2004, 47(3): 189–201CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Liuxin Yang
    • 1
  • Zhou Chen
    • 2
  • Jian Zhang
    • 1
  • Chang-An Wang
    • 1
    Email author
  1. 1.State Key Lab of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations