Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction
- 47 Downloads
Abstract
Though the transition-metal dichalcogenides (TMDs) were proven to have a better performance on the hydrogen evolution reaction (HER), the bulk production of active TMD materials remains a challenging work. This report overcomes those barriers by showing a simple procedure to synthesize TaS2 nanosheets through modifying the arc discharge process. The usage of chloride as the transporting agent reduces the growth period of the formed TaS2 with active edge sites. TaS2 is found to have a uniform thickness (4 nm) with high crystallinity and adopt a 2H polytype (double-layered hexagonal) structure. The as-synthesized TaS2 has superior activity for HER with the potential of 280 mV.
Keywords
hydrogen evolution reaction TaS2 nanosheets arc disharge active edge sitesPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 21576289 and 21322609), the Science Foundation Research Funds Provided to New Recruitments of China University of Petroleum, Beijing (2462014QZDX01) and the Thousand Talents Program.
Supplementary material
References
- [1]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669CrossRefGoogle Scholar
- [2]Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924CrossRefGoogle Scholar
- [3]Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581CrossRefGoogle Scholar
- [4]Meric I, Han M Y, Young A F, et al. Current saturation in zerobandgap, top-gated graphene field-effect transistors. Nature Nanotechnology, 2008, 3(11): 654–659CrossRefGoogle Scholar
- [5]Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469CrossRefGoogle Scholar
- [6]Zeng Z Y, Tan C L, Huang X, et al. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(2): 797–803CrossRefGoogle Scholar
- [7]Wu J J, Liu MJ, Chatterjee K, et al. Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Advanced Materials Interfaces, 2016, 3(9): 1500669CrossRefGoogle Scholar
- [8]Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150CrossRefGoogle Scholar
- [9]Raj S I, Xu X W, Yang W, et al. Highly active and reflective MoS2 counter electrode for enhancement of photovoltaic efficiency of dye sensitized solar cells. Electrochimica Acta, 2016, 212: 614–620CrossRefGoogle Scholar
- [10]Liu C, Kong D, Hsu P C, et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nature Nanotechnology, 2016, 11(12): 1098–1104CrossRefGoogle Scholar
- [11]Tan C, Zeng Z, Huang X, et al. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. Angewandte Chemie International Edition in English, 2015, 54(6): 1841–1845CrossRefGoogle Scholar
- [12]Zhang X, Lai Z, Liu Z, et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angewandte Chemie International Edition in English, 2015, 54(18): 5425–5428CrossRefGoogle Scholar
- [13]Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325CrossRefGoogle Scholar
- [14]Muratore C, Hu J J, Wang B, et al. Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Applied Physics Letters, 2014, 104(26): 261604CrossRefGoogle Scholar
- [15]Etzkorn J, Therese H A, Rocker F, et al. Metal-organic chemical vapor deposition synthesis of hollow inorganic-fullerene-type MoS2 and MoSe2 nanoparticles. Advanced Materials, 2005, 17(19): 2372–2375CrossRefGoogle Scholar
- [16]Nath M, Rao C N R. New metal disulfide nanotubes. Journal of the American Chemical Society, 2001, 123(20): 4841–4842CrossRefGoogle Scholar
- [17]Dunnill C W, MacLaren I, Gregory D H. Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry. Nanoscale, 2010, 2(1): 90–97CrossRefGoogle Scholar
- [18]Li P, Stender C L, Ringe E, et al. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099CrossRefGoogle Scholar
- [19]Yu Y, Yang F, Lu X F, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nature Nanotechnology, 2015, 10(3): 270–276CrossRefGoogle Scholar
- [20]Schuffenhauer C, Parkinson B A, Jin-Phillipp N Y, et al. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small, 2005, 1(11): 1100–1109CrossRefGoogle Scholar
- [21]Park K Y, Kim H J, Suh Y J. Preparation of tantalum nanopowders through hydrogen reduction of TaCl5 vapor. Powder Technology, 2007, 172(3): 144–148CrossRefGoogle Scholar
- [22]Sun G, Liu J, Zhang X, et al. Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. Angewandte Chemie International Edition, 2014, 53(46): 12576–12580Google Scholar
- [23]Wu X C, Tao Y R, Gao Q X. Fabrication of TaS2 nanobelt arrays and their enhanced field-emission. Chemical Communications, 2009, 40(40): 6008–6010CrossRefGoogle Scholar
- [24]Wu X C, Tao Y R, Gao Q X, et al. Superconducting TaS2–xIy hierarchical nanostructures. Chemical Communications, 2009, 28(28): 4290–4292CrossRefGoogle Scholar
- [25]Ubaldini A, Jacimovic J, Ubrig N, et al. Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides. Crystal Growth & Design, 2013, 13(10): 4453–4459CrossRefGoogle Scholar
- [26]Li P, Stender C L, Ringe E, et al. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099CrossRefGoogle Scholar
- [S1]Wu X, Tao Y, Hu Y, et al. Tantalum disulfide nanobelts: preparation, superconductivity and field emission. Nanotechnology, 2005, 17(1): 201–205CrossRefGoogle Scholar
- [S2]Wu X C, Tao Y R, Gao Q X, et al. Superconducting TaS2–xIy hierarchical nanostructures. Chemical Communications, 2009, 28(28): 4290–4292CrossRefGoogle Scholar
- [S3]Wu X C, Tao Y R, Gao Q X. Fabrication of TaS2 nanobelt arrays and their enhanced field-emission. Chemical Communications, 2009, 40(40): 6008–6010CrossRefGoogle Scholar
- [S4]Li P, Stender C L, Ringe E, et al. Synthesis of TaS2 nanotubes from Ta2O5 nanotube templates. Small, 2010, 6(10): 1096–1099CrossRefGoogle Scholar
- [S5]Schuffenhauer C, Parkinson B A, Jin-Phillipp N Y, et al. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small, 2005, 1(11): 1100–1109CrossRefGoogle Scholar
- [S6]Dunnill C W, MacLaren I, Gregory D H. Superconducting tantalum disulfide nanotapes: growth, structure and stoichiometry. Nanoscale, 2010, 2(1): 90–97CrossRefGoogle Scholar
- [S7]Yu Y, Yang F, Lu X F, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nature Nanotechnology, 2015, 10(3): 270–276CrossRefGoogle Scholar
- [S8]Li H, Tan Y, Liu P, et al. Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Advanced Materials, 2016, 28(40): 8945–8949CrossRefGoogle Scholar
- [S9]Nguyen T P, Choi S, Jeon J M, et al. Transition metal disulfide nanosheets synthesized by facile sonication method for the hydrogen evolution reaction. The Journal of Physical Chemistry C, 2016, 120(7): 3929–3935CrossRefGoogle Scholar
- [S10]Feng Y, Gong S, Du E, et al. 3R TaS2 surpasses the corresponding 1T and 2H phases for the hydrogen evolution reaction. The Journal of Physical Chemistry C, 2018, 122(4): 2382–2390CrossRefGoogle Scholar