Advertisement

Frontiers of Materials Science

, Volume 12, Issue 3, pp 207–213 | Cite as

Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends

  • Timur Sh. Atabaev
Mini-Review
  • 15 Downloads

Abstract

In the last decade, the surface plasmon resonance-enhanced solar water splitting (SWS) has been actively investigated for improved hydrogen production. In this mini-review, we briefly introduce the mechanisms for plasmon-enhanced SWS and then review some representative studies related to these mechanisms. In addition, we also briefly discuss how metal oxide geometry affects the SWS activity in combined metal-semiconductor nanostructures. Finally, we summarize the recent discoveries and proposed a future vision for plasmon-enhanced SWS with metal oxide nanostructures.

Keywords

surface plasmon resonance solar water splitting nanostructures noble metals metal oxides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the NU Social Policy grant.

References

  1. [1]
    Tachibana Y, Vayssieres L, Durrant J R. Artificial photosynthesis for solar water-splitting. Nature Photonics, 2012, 6(8): 511–518CrossRefGoogle Scholar
  2. [2]
    Atabaev T S, Ajmal M, Hong N H, et al. Ti-doped hematite thin films for efficient water splitting. Applied Physics A: Materials Science & Processing, 2015, 118(4): 1539–1542CrossRefGoogle Scholar
  3. [3]
    Ahmad H, Kamarudin S K, Minggu L J, et al. Hydrogen from photo-catalytic water splitting process: A review. Renewable & Sustainable Energy Reviews, 2015, 43: 599–610CrossRefGoogle Scholar
  4. [4]
    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38CrossRefGoogle Scholar
  5. [5]
    Atabaev T S, Vu H H T, Ajmal M, et al. Dual-mode spectral convertors as a simple approach for the enhancement of hematite’s solar water splitting efficiency. Applied Physics A: Materials Science & Processing, 2015, 119(4): 1373–1377CrossRefGoogle Scholar
  6. [6]
    Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473CrossRefGoogle Scholar
  7. [7]
    Tamirat A G, Rick J, Dubale A A, et al. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horizons, 2016, 1(4): 243–267CrossRefGoogle Scholar
  8. [8]
    Chen S, Thind S S, Chen A. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochemistry Communications, 2016, 63: 10–17CrossRefGoogle Scholar
  9. [9]
    Wolcott A, Smith W A, Kuykendall T R, et al. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 2009, 5(1): 104–111CrossRefGoogle Scholar
  10. [10]
    Wagner F T, Somorjai G A. Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. Journal of the American Chemical Society, 1980, 102 (17): 5494–5502CrossRefGoogle Scholar
  11. [11]
    Formal F L, Gratzel M, Sivula K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Advanced Functional Materials, 2010, 20(7): 1099–1107CrossRefGoogle Scholar
  12. [12]
    Thuy T N T, Atabaev T S, Vu H H T, et al. TiO2 thin films sensitized with upconversion phosphor for efficient solar water splitting. Journal of Nanoscience and Nanotechnology, 2017, 17 (10): 7647–7650CrossRefGoogle Scholar
  13. [13]
    Wang J, Du C, Peng Q, et al. Enhanced photoelectrochemical water splitting performance of hematite nanorods by Co and Sn doping. International Journal of Hydrogen Energy, 2017, 42(49): 29140–29149CrossRefGoogle Scholar
  14. [14]
    Tsege E L, Atabaev T S, Hossain MA, et al. Cu-doped flower-like hematite nanostructures for efficient water splitting applications. Journal of Physics and Chemistry of Solids, 2016, 98: 283–289CrossRefGoogle Scholar
  15. [15]
    Atabaev T S, Lee D H, Hong N H. Fabrication of TiO2/CuO photoelectrode with enhanced solar water splitting activity. Functional Materials Letters, 2017, 10(06): 1750084CrossRefGoogle Scholar
  16. [16]
    Yu J, Hai Y, Cheng B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. The Journal of Physical Chemistry C, 2011, 115(11): 4953–4958CrossRefGoogle Scholar
  17. [17]
    Xu F, Mei J, Zheng M, et al. Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting. Journal of Alloys and Compounds, 2017, 693: 1124–1132CrossRefGoogle Scholar
  18. [18]
    Atabaev T S, Atabaev S. Titania coated hematite nanostructures for solar water splitting applications. Nano Life, 2016, 6(2): 1650008CrossRefGoogle Scholar
  19. [19]
    Warren S C, Thimsen E. Plasmonic solar water splitting. Energy & Environmental Science, 2012, 5(1): 5133–5146CrossRefGoogle Scholar
  20. [20]
    Atabaev T S, Hossain M A, Lee D, et al. Pt-coated TiO2 nanorods for photoelectrochemical water splitting applications. Results in Physics, 2016, 6: 373–376CrossRefGoogle Scholar
  21. [21]
    Ye W, Long R, Huang H, et al. Plasmonic nanostructures in solar energy conversion. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(5): 1008–1021CrossRefGoogle Scholar
  22. [22]
    Hartland G V. Optical studies of dynamics in noble metal nanostructures. Chemical Reviews, 2011, 111(6): 3858–3887CrossRefGoogle Scholar
  23. [23]
    Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213CrossRefGoogle Scholar
  24. [24]
    Link S, El-Sayed M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 1999, 103(21): 4212–4217CrossRefGoogle Scholar
  25. [25]
    Huang T, Xu X H N. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using singlenanoparticle plasmonic microscopy and spectroscopy. Journal of Materials Chemistry, 2010, 20(44): 9867–9876CrossRefGoogle Scholar
  26. [26]
    López-Lozano X, Barron H, Mottet C, et al. Aspect-ratio-and size-dependent emergence of the surface-plasmon resonance in gold nanorods — an ab initio TDDFT study. Physical Chemistry Chemical Physics, 2014, 16(5): 1820–1823CrossRefGoogle Scholar
  27. [27]
    Zhang P, Wang T, Gong J. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Advanced Materials, 2015, 27(36): 5328–5342CrossRefGoogle Scholar
  28. [28]
    Ingram D B, Linic S. Water splitting on composite plasmonicmetal/ semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. Journal of the American Chemical Society, 2011, 133(14): 5202–5205CrossRefGoogle Scholar
  29. [29]
    Zhang Q, Thrithamarassery Gangadharan D, Liu Y, et al. Recent advancements in plasmon-enhanced visible light-driven water splitting. Journal of Materiomics, 2017, 3(1): 33–50CrossRefGoogle Scholar
  30. [30]
    Cushing S K, Li J, Meng F, et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. Journal of the American Chemical Society, 2012, 134(36): 15033–15041CrossRefGoogle Scholar
  31. [31]
    Christopher P, Ingram D B, Linic S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: Photochemistry mediated by Ag surface plasmons. The Journal of Physical Chemistry C, 2010, 114(19): 9173–9177CrossRefGoogle Scholar
  32. [32]
    Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 2006, 110(14): 7238–7248CrossRefGoogle Scholar
  33. [33]
    Pala R A, White J, Barnard E, et al. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Advanced Materials, 2009, 21(34): 3504–3509CrossRefGoogle Scholar
  34. [34]
    Govorov A O, Zhang H, Demir H V, et al. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today, 2014, 9(1): 85–101CrossRefGoogle Scholar
  35. [35]
    Besteiro L V, Govorov A O. Amplified generation of hot electrons and quantum surface effects in nanoparticle dimers with plasmonic hot spots. The Journal of Physical Chemistry C, 2016, 120(34): 19329–19339CrossRefGoogle Scholar
  36. [36]
    Zhang H, Govorov A O. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. The Journal of Physical Chemistry C, 2014, 118 (14): 7606–7614CrossRefGoogle Scholar
  37. [37]
    Pu Y C, Wang G, Chang K D, et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Letters, 2013, 13(8): 3817–3823CrossRefGoogle Scholar
  38. [38]
    Chen K, Feng X, Hu R, et al. Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays. Journal of Alloys and Compounds, 2013, 554: 72–79CrossRefGoogle Scholar
  39. [39]
    Zhang Z, Zhang L, Hedhili M N, et al. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Letters, 2013, 13(1): 14–20CrossRefGoogle Scholar
  40. [40]
    Peng C, Wang W, Zhang W, et al. Surface plasmon-driven photoelectrochemical water splitting of TiO2 nanowires decorated with Ag nanoparticles under visible light illumination. Applied Surface Science, 2017, 420: 286–295CrossRefGoogle Scholar
  41. [41]
    Hsu Y K, Fu S Y, Chen M H, et al. Facile synthesis of Pt nanoparticles/ZnO nanorod arrays for photoelectrochemical water splitting. Electrochimica Acta, 2014, 120: 1–5CrossRefGoogle Scholar
  42. [42]
    Wei Y, Ke L, Kong J, et al. Enhanced photoelectrochemical watersplitting effect with a bent ZnO nanorod photo anode decorated with Ag nanoparticles. Nanotechnology, 2012, 23(23): 235401CrossRefGoogle Scholar
  43. [43]
    Thomann I, Pinaud B A, Chen Z, et al. Plasmon enhanced solar-tofuel energy conversion. Nano Letters, 2011, 11(8): 3440–3446CrossRefGoogle Scholar
  44. [44]
    Wang L, Zhou X, Nguyen N T, et al. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays. ChemSusChem, 2015, 8 (4): 618–622CrossRefGoogle Scholar
  45. [45]
    Zhang X, Liu Y, Kang Z. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2014, 6(6): 4480–4489CrossRefGoogle Scholar
  46. [46]
    Su F, Wang T, Lv R, et al. Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale, 2013, 5(19): 9001–9009CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, School of Science and TechnologyNazarbayev UniversityAstanaKazakhstan

Personalised recommendations