Advertisement

Detection and monitoring prostate specific antigen using nanotechnology approaches to biosensing

  • Grant Perry
  • Fernando Cortezon-TamaritEmail author
  • Sofia I. PascuEmail author
Open Access
Review Article

Abstract

Prostate cancer has a high incidence in men and remains the second cause of mortality due to cancer worldwide. As the development of the disease is greatly correlated to age, the identification of novel detection methods reliable, efficient, and cost effective is a matter of significant importance in the ageing population of western societies. The detection of the prostate specific antigen (PSA) in blood samples has been the preferred method for the detection and monitoring of prostate cancer over the past decades. Despite the indications against its use in massive population screening, PSA still remains the best studied biomarker for prostate cancer and the detection of its different forms and incorporation in multiplexed designs with other biomarkers still remains a highly valuable indicator in the theranostics of prostate cancer. The latest developments in the use of nanomaterials towards the construction of PSA biosensors are reviewed hereby. The incorporation of gold nanoparticles, silica nanoparticles and graphene nanostructures to biosensing devices has represented a big leap forward in terms of sensitivity, stability and miniaturization. Both electrochemical and optical detection methods for the detection of PSA will be reviewed herein.

Keywords

biosensing immunosensor PSA prostate cancer fluorescence 

Notes

Acknowledgements

The authors would like to thank the ERC Consolidator grant scheme (O2SENSE) for funding PROSENSE network for funding and Dr. Pedro Estrela for a collaboration and supportive discussions in this field.

References

  1. 1.
    Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O, Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European Journal of Cancer, 2018, 103: 356–387Google Scholar
  2. 2.
    Luengo-Fernandez R, Leal J, Gray A, Sullivan R. Economic burden of cancer across the European Union: A population-based cost analysis. Lancet. Oncology, 2013, 14(12): 1165–1174Google Scholar
  3. 3.
    Siegel R L, Miller K D, Jemal A. Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 2018, 68(1): 7–30Google Scholar
  4. 4.
    Ge H, Riss P J, Mirabello V, Calatayud D G, Flower S E, Arrowsmith R L, Fryer T D, Hong Y, Sawiak S, Jacobs R M J, et al. Behavior of supramolecular assemblies of radiometal-filled and fluorescent carbon nanocapsules in vitro and in vivo. Chem, 2017, 3(3): 437–460Google Scholar
  5. 5.
    Kumar C S S R, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 2011, 63(9): 789–808Google Scholar
  6. 6.
    Heidenreich A, Bastian P J, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, Mottet N. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent-update 2013. European Urology, 2014, 65(1): 124–137Google Scholar
  7. 7.
    Force U S P S T. Screening for prostate cancer: US preventive services task force recommendation statement. Journal of the American Medical Association, 2018, 319(18): 1901–1913Google Scholar
  8. 8.
    Yao J, Wang Y, Dai Y, Liu C C. Bioconjugated, single-use biosensor for the detection of biomarkers of prostate cancer. ACS Omega, 2018, 3(6): 6411–6418Google Scholar
  9. 9.
    Rigau M, Ortega I, Mir M C, Ballesteros C, Garcia M, Llauradó M, Colás E, Pedrola N, Montes M, Sequeiros T, et al. A three-gene panel on urine increases PSA specificity in the detection of prostate cancer. Prostate, 2011, 71(16): 1736–1745Google Scholar
  10. 10.
    Salami S S, Schmidt F, Laxman B, Regan M M, Rickman D S, Scherr D, Bueti G, Siddiqui J, Tomlins S A, Wei J T, et al. Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2013, 31(5): 566–571Google Scholar
  11. 11.
    Lundwall Å, Lilja H. Molecular cloning of human prostate specific antigen cDNA. FEBS Letters, 1987, 214(2): 317–322Google Scholar
  12. 12.
    Stura E A, Muller B H, Bossus M, Michel S, Jolivet-Reynaud C, Ducancel F. Crystal structure of human prostate-specific antigen in a sandwich antibody complex. Journal of Molecular Biology, 2011, 414(4): 530–544Google Scholar
  13. 13.
    Cheng Z, Choi N, Wang R, Lee S, Moon K C, Yoon S Y, Chen L, Choo J. Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano, 2017, 11(5): 4926–4933Google Scholar
  14. 14.
    Voller A, Bartlett A, Bidwell D E. Enzyme immunoassays with special reference to ELISA techniques. Journal of Clinical Pathology, 1978, 31(6): 507–520Google Scholar
  15. 15.
    Acevedo B, Perera Y, Ruiz M, Rojas G, Benítez J, Ayala M, Gavilondo J. Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clinica Chimica Acta, 2002, 317(1): 55–63Google Scholar
  16. 16.
    Luderer A A, Chen Y T, Soriano T F, Kramp W J, Carlson G, Cuny C, Sharp T, Smith W, Petteway J, Brawer M K, et al. Measurement of the proportion of free to total prostate-specific antigen improves diagnostic performance of prostate-specific antigen in the diagnostic gray zone of total prostate-specific antigen. Urology, 1995, 46(2): 187–194Google Scholar
  17. 17.
    Chen Z, Lei Y, Chen X, Wang Z, Liu J. An aptamer based resonance light scattering assay of prostate specific antigen. Biosensors & Bioelectronics, 2012, 36(1): 35–40Google Scholar
  18. 18.
    Sarkar P, Pal P S, Ghosh D, Setford S J, Tothill I E. Amperometric biosensors for detection of the prostate cancer marker (PSA). International Journal of Pharmaceutics, 2002, 238(1): 1–9Google Scholar
  19. 19.
    Dhenadhayalan N, Yadav K, Sriram M I, Lee H L, Lin K C. Ultrasensitive DNA sensing of a prostate-specific antigen based on 2D nanosheets in live cells. Nanoscale, 2017, 9(33): 12087–12095Google Scholar
  20. 20.
    Jolly P, Tamboli V, Harniman R L, Estrela P, Allender C J, Bowen J L. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosensors & Bioelectronics, 2016, 75: 188–195Google Scholar
  21. 21.
    Choi J H, Kim H S, Choi J W, Hong J W, Kim Y K, Oh B K. A novel Au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequence-specific peptide cleavage reaction. Biosensors & Bioelectronics, 2013, 49: 415–419Google Scholar
  22. 22.
    Chikkaveeraiah B V, Bhirde A A, Morgan N Y, Eden H S, Chen X. Electrochemical Immunosensors for Detection of Cancer Protein Biomarkers. ACS Nano, 2012, 6(8): 6546–6561Google Scholar
  23. 23.
    Souada M, Piro B, Reisberg S, Anquetin G, Noël V, Pham M C. Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosensors & Bioelectronics, 2015, 68: 49–54Google Scholar
  24. 24.
    Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J. Nanomaterial-based biosensors for detection of prostate specific antigen. Mikrochimica Acta, 2017, 184(9): 3049–3067Google Scholar
  25. 25.
    Pfister C, Basuyau J P. Current usefulness of free/total PSA ratio in the diagnosis of prostate cancer at an early stage. World Journal of Urology, 2005, 23(4): 236–242Google Scholar
  26. 26.
    Dong Y X, Cao J T, Liu Y M, Ma S H. A novel immunosensing platform for highly sensitive prostate specific antigen detection based on dual-quenching of photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated polydopamine nanospheres. Biosensors & Bioelectronics, 2017, 91: 246–252Google Scholar
  27. 27.
    Wang Y, Li Z, Hu D, Lin C T, Li J, Lin Y. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. Journal of the American Chemical Society, 2010, 132(27): 9274–9276Google Scholar
  28. 28.
    Cao J T, Yang J J, Zhao L Z, Wang Y L, Wang H, Liu Y M, Ma S H. Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen. Biosensors & Bioelectronics, 2018, 99: 92–98Google Scholar
  29. 29.
    Wang X, Xu R, Sun X, Wang Y, Ren X, Du B, Wu D, Wei Q. Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specificantigen detection. Biosensors & Bioelectronics, 2017, 96: 239–245Google Scholar
  30. 30.
    Yang Z, Kasprzyk-Hordern B, Goggins S, Frost C G, Estrela P. A novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA-directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens. Analyst (London), 2015, 140(8): 2628–2633Google Scholar
  31. 31.
    Wu M S, Chen R N, Xiao Y, Lv Z X. Novel “signal-on” electrochemiluminescence biosensor for the detection of PSA based on resonance energy transfer. Talanta, 2016, 161: 271–277Google Scholar
  32. 32.
    Jolly P, Zhurauski P, Hammond J L, Miodek A, Liébana S, Bertok T, Tkáč J, Estrela P. Self-assembled gold nanoparticles for impedimetric and amperometric detection of a prostate cancer biomarker. Sensors and Actuators. B, Chemical, 2017, 251: 637–643Google Scholar
  33. 33.
    Kavosi B, Salimi A, Hallaj R, Moradi F. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosensors & Bioelectronics, 2015, 74: 915–923Google Scholar
  34. 34.
    Sattarahmady N, Rahi A, Heli H. A signal-on built in-marker electrochemical aptasensor for human prostate-specific antigen based on a hairbrush-like gold nanostructure. Scientific Reports, 2017, 7(1): 11238Google Scholar
  35. 35.
    Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191Google Scholar
  36. 36.
    poor N Z M, Baniasadi L, Omidi M, Amoabediny G, Yazdian F, Attar H, Heydarzadeh A, Zarami A S H, Sheikhha M H. An inhibitory enzyme electrode for hydrogen sulfide detection. Enzyme and Microbial Technology, 2014, 63: 7–12Google Scholar
  37. 37.
    Andronescu C, Schuhmann W. Graphene-based field effect transistors as biosensors. Current Opinion in Electrochemistry, 2017, 3(1): 11–17Google Scholar
  38. 38.
    Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi S S, Marchetto H. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Advanced Functional Materials, 2008, 18(21): 3506–3514Google Scholar
  39. 39.
    Zhang J J, Gu M M, Zheng T T, Zhu J J. Synthesis of gelatin-stabilized gold nanoparticles and assembly of carboxylic singlewalled carbon nanotubes/au composites for cytosensing and drug uptake. Analytical Chemistry, 2009, 81(16): 6641–6648Google Scholar
  40. 40.
    McGrath S E, Michael A, Pandha H, Morgan R. Engrailed homeobox transcription factors as potential markers and targets in cancer. FEBS Letters, 2013, 587(6): 549–554Google Scholar
  41. 41.
    Settu K, Liu J T, Chen C J, Tsai J Z. Development of carbon-graphene-based aptamer biosensor for EN2 protein detection. Analytical Biochemistry, 2017, 534: 99–107Google Scholar
  42. 42.
    Tezerjani M D, Benvidi A, Rezaeinasab M, Jahanbani S, Moshtaghioun S M, Youssefi M, Zarrini K. An impedimeric biosensor based on a composite of graphene nanosheets and polyaniline as a suitable platform for prostate cancer sensing. Analytical Methods, 2016, 8(41): 7507–7515Google Scholar
  43. 43.
    Gao X Z, Liu H J, Cheng F, Chen Y. Thermoresponsive polyaniline nanoparticles: Preparation, characterization, and their potential application in waterborne anticorrosion coatings. Chemical Engineering Journal, 2016, 283: 682–691Google Scholar
  44. 44.
    Pan L H, Kuo S H, Lin T Y, Lin C W, Fang P Y, Yang H W. An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosensors & Bioelectronics, 2017, 89: 598–605Google Scholar
  45. 45.
    Zhou Q, Lin Y, Shu J, Zhang K, Yu Z, Tang D. Reduced graphene oxide-functionalized FeOOH for signal-on photoelectrochemical sensing of prostate-specific antigen with bioresponsive controlled release system. Biosensors & Bioelectronics, 2017, 98: 15–21Google Scholar
  46. 46.
    Padhi D K, Parida K. Facile fabrication of α-FeOOH nanorod/RGO composite: A robust photocatalyst for reduction of Cr(VI) under visible light irradiation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(26): 10300–10312Google Scholar
  47. 47.
    Do T T N, Van Phi T, Nguy T P, Wagner P, Eersels K, Vestergaard M C, Truong L T N. Anisotropic in situ-coated AuNPs on screen-printed carbon surface for enhanced prostate-specific antigen impedimetric aptasensor. Journal of Electronic Materials, 2017, 46(6): 3542–3552Google Scholar
  48. 48.
    Liu B, Lu L S, Hua E, Jiang S T, Xie G M. Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Mikrochimica Acta, 2012, 178(1–2): 163–170Google Scholar
  49. 49.
    Barman S C, Hossain M F, Park J Y. Gold nanoparticles assembled chemically functionalized reduced graphene oxide supported electrochemical immunosensor for ultra-sensitive prostate cancer detection. Journal of the Electrochemical Society, 2017, 164(6): B234–B239Google Scholar
  50. 50.
    Jang H D, Kim S K, Chang H, Choi J W. 3D label-free prostate specific antigen (PSA) immunosensor based on graphene-gold composites. Biosensors & Bioelectronics, 2015, 63: 546–551Google Scholar
  51. 51.
    Liu L, Li Y, Tian L, Wei Q, Cao W. Ultrasensitive sandwich-type prostate specific antigen immunosensor based on Ag overgrowth in Pd nano-octahedrons heterodimers decorated on amino functionalized multiwalled carbon nanotubes. Sensors and Actuators. B, Chemical, 2016, 237: 733–739Google Scholar
  52. 52.
    Han L, Liu C M, Dong S L, Du C X, Zhang X Y, Li L H, Wei Y. Enhanced conductivity of rGO/Ag NPs composites for electrochemical immunoassay of prostate-specific antigen. Biosensors & Bioelectronics, 2017, 87: 466–472Google Scholar
  53. 53.
    Sharafeldin M, Bishop G W, Bhakta S, El-Sawy A, Suib S L, Rusling J F. Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins. Biosensors & Bioelectronics, 2017, 91: 359–366Google Scholar
  54. 54.
    Feng J, Li Y, Li M, Li F, Han J, Dong Y, Chen Z, Wang P, Liu H, Wei Q. A novel sandwich-type electrochemical immunosensor for PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4. Biosensors & Bioelectronics, 2017, 91: 441–448Google Scholar
  55. 55.
    Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays in Biochemistry, 2016, 60(1): 91–100Google Scholar
  56. 56.
    Jiang Z, Qin Y, Peng Z, Chen S, Chen S, Deng C, Xiang J. The simultaneous detection of free and total prostate antigen in serum samples with high sensitivity and specificity by using the dualchannel surface plasmon resonance. Biosensors & Bioelectronics, 2014, 62: 268–273Google Scholar
  57. 57.
    Zhang B, Liu B, Chen G, Tang D. Competitive-type displacement reaction for direct potentiometric detection of low-abundance protein. Biosensors & Bioelectronics, 2014, 53: 465–471Google Scholar
  58. 58.
    Liang J, Yao C, Li X, Wu Z, Huang C, Fu Q, Lan C, Cao D, Tang Y. Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosensors & Bioelectronics, 2015, 69: 128–134Google Scholar
  59. 59.
    Duan F, Zhang S, Yang L, Zhang Z, He L, Wang M. Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS2 quantum dots and g-C3N4 nanosheets decorated with chitosan-stabilized Au nanoparticles for selectively detecting prostate specific antigen. Analytica Chimica Acta, 2018, 1036: 121–132Google Scholar
  60. 60.
    Parveen S, Aslam M S, Hu L, Xu G. Electrogenerated Chemiluminescence: Protocols and Applications. Dordrecht: Springer, 2013, 1–152Google Scholar
  61. 61.
    Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chemical Reviews, 2008, 108(7): 2506–2553Google Scholar
  62. 62.
    Deng W, Chu C, Ge S, Yu J, Yan M, Song X. Electrochemiluminescence PSA assay using an ITO electrode modified with gold and palladium, and flower-like titanium dioxide microparticles as ECL labels. Mikrochimica Acta, 2015, 182(5): 1009–1016Google Scholar
  63. 63.
    Ma H, Li X, Yan T, Li Y, Zhang Y, Wu D, Wei Q, Du B. Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb (II) metal-organic framework. Biosensors & Bioelectronics, 2016, 79: 379–385Google Scholar
  64. 64.
    Shao K, Wang B, Nie A, Ye S, Ma J, Li Z, Lv Z, Han H. Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/Au/G-quadruplex. Biosensors & Bioelectronics, 2018, 118: 160–166Google Scholar
  65. 65.
    Zhu W, Saddam Khan M, Cao W, Sun X, Ma H, Zhang Y, Wei Q. Ni(OH)2/NGQDs-based electrochemiluminescence immunosensor for prostate specific antigen detection by coupling resonance energy transfer with Fe3O4@MnO2 composites. Biosensors & Bioelectronics, 2018, 99: 346–352Google Scholar
  66. 66.
    Yang J J, Cao J T, Wang H, Liu Y M, Ren S W. Ferrocene-graphene sheets for high-efficiency quenching of electrochemiluminescence from Au nanoparticles functionalized cadmium sulfide flower-like three dimensional assemblies and sensitive detection of prostate specific antigen. Talanta, 2017, 167: 325–332Google Scholar
  67. 67.
    Tian C, Wang L, Luan F, Zhuang X. An electrochemiluminescence sensor for the detection of prostate protein antigen based on the graphene quantum dots infilled TiO2 nanotube arrays. Talanta, 2019, 191: 103–108Google Scholar
  68. 68.
    Kong R M, Zhang X, Ding L, Yang D, Qu F. Label-free fluorescence turn-on aptasensor for prostate-specific antigen sensing based on aggregation-induced emission-silica nanospheres. Analytical and Bioanalytical Chemistry, 2017, 409(24): 5757–5765Google Scholar
  69. 69.
    Hao T, Wu X, Xu L, Liu L, Ma W, Kuang H, Xu C. Ultrasensitive detection of prostate-specific antigen and thrombin based on gold-upconversion nanoparticle assembled pyramids. Small, 2017, 13(19): 1603944Google Scholar
  70. 70.
    Yang L, Li N, Wang K, Hai X, Liu J, Dang F. A novel peptide/Fe3O4@SiO2-Au nanocomposite-based fluorescence biosensor for the highly selective and sensitive detection of prostate-specific antigen. Talanta, 2018, 179: 531–537Google Scholar
  71. 71.
    Xu D D, Deng Y L, Li C Y, Lin Y, Tang H W. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen. Biosensors & Bioelectronics, 2017, 87: 881–887Google Scholar
  72. 72.
    Li X, Wei L, Pan L, Yi Z, Wang X, Ye Z, Xiao L, Li H W, Wang J. Homogeneous immunosorbent assay based on single-particle enumeration using upconversion nanoparticles for the sensitive detection of cancer biomarkers. Analytical Chemistry, 2018, 90(7): 4807–4814Google Scholar
  73. 73.
    Wegner K D, Jin Z, Lindén S, Jennings T L, Hildebrandt N. Quantum-dot-based Förster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. ACS Nano, 2013, 7(8): 7411–7419Google Scholar
  74. 74.
    Tagit O, Hildebrandt N. Fluorescence sensing of circulating diagnostic biomarkers using molecular probes and nanoparticles. ACS Sensors, 2017, 2(1): 31–45Google Scholar
  75. 75.
    Garcia-Cortes M, Encinar J R, Costa-Fernandez J M, Sanz-Medel A. Highly sensitive nanoparticle-based immunoassays with elemental detection: Application to Prostate-Specific Antigen quantification. Biosensors & Bioelectronics, 2016, 85: 128–134Google Scholar
  76. 76.
    Zhang K, Lv S, Lin Z, Tang D. CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectro-chemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosensors & Bioelectronics, 2017, 95: 34–40Google Scholar
  77. 77.
    Annio G, Jennings T L, Tagit O, Hildebrandt N. Sensitivity enhancement of förster resonance energy transfer immunoassays by multiple antibody conjugation on quantum dots. Bioconjugate Chemistry, 2018, 29(6): 2082–2089Google Scholar
  78. 78.
    Mattera L, Bhuckory S, Wegner K D, Qiu X, Agnese F, Lincheneau C, Senden T, Djurado D, Charbonnière L J, Hildebrandt N, Reiss P. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits. Nanoscale, 2016, 8(21): 11275–11283Google Scholar
  79. 79.
    Kavosi B, Navaee A, Salimi A. Amplified fluorescence resonance energy transfer sensing of prostate specific antigen based on aggregation of CdTe QDs/antibody and aptamer decorated of AuNPs-PAMAM dendrimer. Journal of Luminescence, 2018, 204: 368–374Google Scholar
  80. 80.
    Yang T, Hou P, Zheng L L, Zhan L, Gao P F, Li Y F, Huang C Z. Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers. Nanoscale, 2017, 9(43): 17020–17028Google Scholar
  81. 81.
    Li X, Li W, Yang Q, Gong X, Guo W, Dong C, Liu J, Xuan L, Chang J. Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Applied Materials & Interfaces, 2014, 6(9): 6406–6414Google Scholar
  82. 82.
    Kong R M, Ding L, Wang Z, You J, Qu F. A novel aptamerfunctionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Analytical and Bioanalytical Chemistry, 2015, 407(2): 369–377Google Scholar
  83. 83.
    Pei H, Zhu S, Yang M, Kong R, Zheng Y, Qu F. Graphene oxide quantum dots@silver core-shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosensors & Bioelectronics, 2015, 74: 909–914Google Scholar
  84. 84.
    Fang B Y, Wang C Y, Li C, Wang H B, Zhao Y D. Amplified using DNase I and aptamer/graphene oxide for sensing prostate specific antigen in human serum. Sensors and Actuators. B, Chemical, 2017, 244: 928–933Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://doi.org/creativecommons.org/licenses/by/4.0/.

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of BathBathUK

Personalised recommendations