Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite

  • Hanlu Wang
  • Idris Jibrin
  • Xingye ZengEmail author
Research Article


Catalysts for the desulfurization of gasoline samples were synthesized via the immobilization of well-dispersed phosphotungstic acid (HPW) on Mobil composition of matter-twenty-two (MWW) zeolite. Characterization results indicated that these catalysts possess a mesoporous structure with the retention of the Keggin structure of immobilized HPW. Relevant reaction parameters influencing sulfur removal were systematically investigated, including HPW loading, catalyst dosage, temperature, initial S-concentration, molar ratio of oxidant to sulfide (O/S), volume ratio of MeCN to model oil (Ext./oil), and sulfide species. The 40 wt-% HPW/MWW catalyst exhibited the highest catalytic activity with 99.6% dibenzothiophene sulfur removal from prepared samples. The 40 wt-% HPW/MWW catalyst was recycled four times and could be easily regenerated. Finally, as an exploratory study, straight-run-gasoline and fluid catalytic cracking gasoline were employed to accurately evaluate the desulfurization performance of 40 wt-% HPW/MWW. Our research provides new insights into the development and application of catalysts for desulfurization of gasoline.


oxidative desulfurization phosphotungstic acid MWW wet impregnation adsorption energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by Petroleum Technology Development Fund (PTDF), Nigeria, and the Training Program for Outstanding Young Teachers in Universities in Guangdong Province (Grant No. YQ2015116), and Petrochemical Industry Transformation and Upgrading Technology Innovation Public Service Platform in Maoming City (No. 2016B020211002), the National Natural Science Foundation of China (Grant No. 21403038), the Natural Science Foundation of Guangdong Province (Grant No. 2015A030313892).

Supplementary material

11705_2019_1842_MOESM1_ESM.pdf (32 kb)
Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite


  1. 1.
    Al Degs Y S, El Sheikh A H, Al Bakain R Z, Newman A P, Al Ghouti M A. Conventional and upcoming sulfur-cleaning technologies for petroleum fuel: A review. Energy Technology (Weinheim), 2016, 4(6): 679–699CrossRefGoogle Scholar
  2. 2.
    Wei Q, Chen J, Song C, Li G. HDS of dibenzothiophenes and hydrogenation of tetralin over a SiO2 supported Ni-Mo-S catalyst. Frontiers of Chemical Science and Engineering, 2015, 9(3): 336–348CrossRefGoogle Scholar
  3. 3.
    Kong A, Wei Y, Li Y. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation. Frontiers of Chemical Science and Engineering, 2013, 7(2): 170–176CrossRefGoogle Scholar
  4. 4.
    Wang L, Yang R T. New nanostructured sorbents for desulfurization of natural gas. Frontiers of Chemical Science and Engineering, 2014, 8(1): 8–19CrossRefGoogle Scholar
  5. 5.
    Tang X D, Zhang Y F, Li J J, Zhu Y Q, Qing D Y, Deng Y X. Deep extractive desulfurization with arenium ion deep eutectic solvents. Industrial & Engineering Chemistry Research, 2015, 54(16): 4625–4632CrossRefGoogle Scholar
  6. 6.
    Chen Y, Song H, Meng H, Lu Y, Li C, Lei Z, Chen B. Polyethylene glycol oligomers as green and efficient extractant for extractive catalytic oxidative desulfurization of diesel. Fuel Processing Technology, 2017, 158: 20–25CrossRefGoogle Scholar
  7. 7.
    Torkamani S, Shayegan J, Yaghmaei S, Alemzadeh I. Study of the first isolated fungus capable of heavy crude oil biodesulfurization. Industrial & Engineering Chemistry Research, 2008, 47(19): 7476–7482CrossRefGoogle Scholar
  8. 8.
    Kilbane J J, Stark B. Biodesulfurization: A model system for microbial physiology research. World Journal of Microbiology & Biotechnology, 2016, 32(8): 137CrossRefGoogle Scholar
  9. 9.
    He J, Wu P, Wu Y, Li H, Jiang W, Xun S, Zhang M, Zhu W, Li H. Taming interfacial oxygen vacancies of amphiphilic tungsten oxide for enhanced catalysis in oxidative desulfurization. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8930–8938CrossRefGoogle Scholar
  10. 10.
    Yue D, Lei J, Peng Y, Li J, Du X. Hierarchical ordered meso/macroporous H3PW12O40/SiO2 catalysts with superior oxidative desulfurization activity. Journal of Porous Materials, 2018, 25(3): 727–734CrossRefGoogle Scholar
  11. 11.
    Leng K, Li X, Ye G, Du Y, Sun Y, Xu W. Ti-containing hierarchical Beta with highly active sites for deep desulfurization of fuels under mild conditions. Catalysis Science & Technology, 2016, 6(20): 7615–7622CrossRefGoogle Scholar
  12. 12.
    Silva G, Voth S, Szymanski P, Prokopchuk E M. Oxidation of dibenzothiophene by hydrogen peroxide in the presence of bis (acetylacetonato)oxovanadium(IV). Fuel Processing Technology, 2011, 92(8): 1656–1661CrossRefGoogle Scholar
  13. 13.
    Haw K G, Bakar W A W A, Ali R, Chong J F, Kadir A A A. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system. Fuel Processing Technology, 2010, 91(9): 1105–1112CrossRefGoogle Scholar
  14. 14.
    Sengupta A, Kamble P D, Basu J K, Sengupta S. Kinetic study and optimization of oxidative desulfurization of benzothiophene using mesoporous titanium silicate-1 catalyst. Industrial & Engineering Chemistry Research, 2012, 51(1): 147–157CrossRefGoogle Scholar
  15. 15.
    Li S W, Yang Z, Gao R M, Zhang G, Zhao J S. Direct synthesis of mesoporous SRL-POM@MOF-199@MCM-41 and its highly catalytic performance for the oxidesulfurization of DBT. Applied Catalysis B: Environmental, 2018, 221: 574–583CrossRefGoogle Scholar
  16. 16.
    Komintarachat C, Trakarnpruk W. Oxidative desulfurization using polyoxometalates. Industrial & Engineering Chemistry Research, 2006, 45(6): 1853–1856CrossRefGoogle Scholar
  17. 17.
    Sachdeva T O, Pant K K. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst. Fuel Processing Technology, 2010, 91(9): 1133–1138CrossRefGoogle Scholar
  18. 18.
    Jin D, Hou Z, Luo Y, Zheng X. Synthesis of dimethyldiphenyl-methane over supported 12-tungstophosphoric acid (H3PW12O40). Journal of Molecular Catalysis A: Chemical, 2006, 243(2): 233–238CrossRefGoogle Scholar
  19. 19.
    Sakthivel A, Komura K, Sugi Y. MCM-48 supported tungstophosphoric acid: An efficient catalyst for the esterification of long-chain fatty acids and alcohols in supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 2008, 47(8): 2538–2544CrossRefGoogle Scholar
  20. 20.
    Liu L, Zhang Y, Tan W. Ultrasound-assisted oxidation of dibenzothiophene with phosphotungstic acid supported on activated carbon. Ultrasonics Sonochemistry, 2014, 21(3): 970–974PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chen T, Fan C. One-pot generation of mesoporous carbon supported nanocrystalline H3PW12O40 heteropoly acid with high performance in microwave esterification of acetic acid and isoamyl alcohol. Journal of Porous Materials, 2013, 20(5): 1225–1230CrossRefGoogle Scholar
  22. 22.
    Liu L, Zhang Y, Tan W. Synthesis and characterization of phosphotungstic acid/activated carbon as a novel ultrasound oxidative desulfurization catalyst. Frontiers of Chemical Science and Engineering, 2013, 7(4): 422–427CrossRefGoogle Scholar
  23. 23.
    You X, Yu L L, Xiao F F, Wu S C, Yang C, Cheng J H. Synthesis of phosphotungstic acid-supported bimodal mesoporous silica-based catalyst for defluorination of aqueous perfluorooctanoic acid under vacuum UV irradiation. Chemical Engineering Journal, 2018, 335: 812–821CrossRefGoogle Scholar
  24. 24.
    Lei J, Chen L, Yang P, Du X, Yan X. Oxidative desulfurization of diesel fuel by mesoporous phosphotungstic acid/SiO2: The effect of preparation methods on catalytic performance. Journal of Porous Materials, 2013, 20(5): 1379–1385CrossRefGoogle Scholar
  25. 25.
    Qiu J, Wang G, Zhang Y, Zeng D, Chen Y. Direct synthesis of mesoporous H3PMo12O40/SiO2 and its catalytic performance in oxidative desulfurization of fuel oil. Fuel, 2015, 147: 195–202CrossRefGoogle Scholar
  26. 26.
    Ha Y, Li Y. Tungstophosphoric acid supported on nano SiO2 catalyst for the alkylation of 2-ethylthiophene with vinyltoluene in the crack C9 fraction. Journal of Porous Materials, 2015, 22(3): 721–728CrossRefGoogle Scholar
  27. 27.
    Bertolini G R, Pizzio L R, Kubacka A, Muñoz-Batista M J, Fernândez-García M. Composite H3PW12O40-TiO2 catalysts for toluene selective photo-oxidation. Applied Catalysis B: Environmental, 2018, 225: 100–109CrossRefGoogle Scholar
  28. 28.
    Marcì G, García-López E, Palmisano L, Carriazo D, Martín C, Rives V. Preparation, characterization and photocatalytic activity of TiO2 impregnated with the heteropolyacid H3PW12O40: Photoassisted degradation of 2-propanol in gas-solid regime. Applied Catalysis B: Environmental, 2009, 90(3–4): 497–506CrossRefGoogle Scholar
  29. 29.
    Yang P, Zhou S, Du Y, Li J, Lei J. Self-assembled meso/macroporous phosphotungstic acid/TiO2 as an efficient catalyst for oxidative desulfurization of fuels. Journal of Porous Materials, 2017, 24(2): 531–539CrossRefGoogle Scholar
  30. 30.
    Yan X M, Mei Z, Mei P, Yang Q. Self-assembled HPW/silica-alumina mesoporous nanocomposite as catalysts for oxidative desulfurization of fuel oil. Journal of Porous Materials, 2014, 21(5): 729–737CrossRefGoogle Scholar
  31. 31.
    Tang L, Luo G, Zhu M, Kang L, Dai B. Preparation, characterization and catalytic performance of HPW-TUD-1 catalyst on oxidative desulfurization. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 620–626CrossRefGoogle Scholar
  32. 32.
    Xiong J, Zhu W, Ding W, Yang L, Chao Y, Li H, Zhu F, Li H. Phosphotungstic acid immobilized on ionic liquid-modified SBA-15: Efficient hydrophobic heterogeneous catalyst for oxidative desulfurization in fuel. Industrial & Engineering Chemistry Research, 2014, 53(51): 19895–19904CrossRefGoogle Scholar
  33. 33.
    Zhao Z K, Dai Y T. A comparison of the H3PW12O40/MCM-41 and HY zeolite for alkenylation of p-xylene with phenylacetylene. Advanced Materials Research, 2013, 634–638: 377–381CrossRefGoogle Scholar
  34. 34.
    Liu Q Y, Wu W L, Wang J, Ren X Q, Wang Y R. Characterization of 12-tungstophosphoric acid impregnated on mesoporous silica SBA-15 and its catalytic performance in isopropylation of naphthalene with isopropanol. Microporous and Mesoporous Materials, 2004, 76(1–3): 51–60CrossRefGoogle Scholar
  35. 35.
    Luo G, Kang L, Zhu M, Dai B. Highly active phosphotungstic acid immobilized on amino functionalized MCM-41 for the oxidesulfurization of dibenzothiophene. Fuel Processing Technology, 2014, 118: 20–27CrossRefGoogle Scholar
  36. 36.
    Wu P. A novel titanosilicate with MWW structure III. Highly efficient and selective production of glycidol through epoxidation of allyl alcohol with H2O2. Journal of Catalysis, 2003, 214(2): 317–326CrossRefGoogle Scholar
  37. 37.
    Wu P, Tatsumi T, Komatsu T, Yashima T. A novel titanosilicate with MWW structure. I. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations. Journal of Physical Chemistry B, 2001, 105(15): 2897–2905CrossRefGoogle Scholar
  38. 38.
    Wu P, Tatsumi T, Komatsu T, Yashima T. Hydrothermal synthesis of a novel titanosilicate with MWW topology. Chemistry Letters, 2000, 29(7): 774–775CrossRefGoogle Scholar
  39. 39.
    Wang Y, Zhou D, Yang G, Miao S, Liu X, Bao X. A DFT study on isomorphously substituted MCM-22 zeolite. Journal of Physical Chemistry A, 2004, 108(32): 6730–6734CrossRefGoogle Scholar
  40. 40.
    Wang J, Zhang F, Hua W, Yue Y, Gao Z. Dehydrogenation of propane over MWW-type zeolites supported gallium oxide. Catalysis Communications, 2012, 18: 63–67CrossRefGoogle Scholar
  41. 41.
    Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006, 27(15): 1787–1799PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, et al. Gaussian 09, Revision D.01. Wallingford, CT: Gaussian, Inc., 2013Google Scholar
  43. 43.
    Luo H Y, Michaelis V K, Hodges S, Griffin R G, Român-Leshkov Y. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science (Cambridge), 2015, 6(11): 6320–6324CrossRefGoogle Scholar
  44. 44.
    Zhang B, Asakura H, Yan N. Atomically dispersed Rhodium on self-assembled phosphotungstic acid: Structural features and catalytic CO oxidation properties. Industrial & Engineering Chemistry Research, 2017, 56(13): 3578–3587CrossRefGoogle Scholar
  45. 45.
    Nie G, Zou J J, Feng R, Zhang X, Wang L. HPW/MCM-41 catalyzed isomerization and dimerization of pure pinene and crude turpentine. Catalysis Today, 2014, 234: 271–277CrossRefGoogle Scholar
  46. 46.
    Wang H, Wang C, Yang Y, Zhao M, Wang Y H. H3PW12O40/mpg-C3N4 as efficient and reusable bifunctional catalyst in one-pot oxidation-Knoevenagel condensation tandem reaction. Catalysis Science & Technology, 2017, 7(2): 405–417CrossRefGoogle Scholar
  47. 47.
    Sheng X, Kong J, Zhou Y, Zhang Y, Zhang Z, Zhou S. Direct synthesis, characterization and catalytic application of SBA-15 mesoporous silica with heteropolyacid incorporated into their framework. Microporous and Mesoporous Materials, 2014, 187: 7–13CrossRefGoogle Scholar
  48. 48.
    Hoo P Y, Abdullah A Z. Direct synthesis of mesoporous 12-tungstophosphoric acid SBA-15 catalyst for selective esterification of glycerol and lauric acid to monolaurate. Chemical Engineering Journal, 2014, 250: 274–287CrossRefGoogle Scholar
  49. 49.
    Kalantari K, Kalbasi M, Sohrabi M, Royaee S J. Enhancing the photocatalytic oxidation of dibenzothiophene using visible light responsive Fe and N co-doped TiO2 nanoparticles. Ceramics International, 2017, 43(1): 973–981CrossRefGoogle Scholar
  50. 50.
    Kim H J, Shul Y G, Han H. Synthesis of heteropolyacid (H3PW12O40)/SiO2 nanoparticles and their catalytic properties. Applied Catalysis A, General, 2006, 299(1–2): 46–51CrossRefGoogle Scholar
  51. 51.
    Zhu Y, Zhu M, Kang L, Yu F, Dai B. Phosphotungstic acid supported on mesoporous graphitic carbon nitride as catalyst for oxidative desulfurization of fuel. Industrial & Engineering Chemistry Research, 2015, 54(7): 2040–2047CrossRefGoogle Scholar
  52. 52.
    Kadijani J A, Narimani E. Simulation of hydrodesulfurization unit for natural gas condensate with high sulfur content. Applied Petrochemical Research, 2016, 6(1): 25–34CrossRefGoogle Scholar
  53. 53.
    Lü H, Gao J, Jiang Z, Jing F, Yang Y, Wang G, Li C. Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N (CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets. Journal of Catalysis, 2006, 239(2): 369–375CrossRefGoogle Scholar
  54. 54.
    Zeng X, Xiao X, Li Y, Chen J, Wang H. Deep desulfurization of liquid fuels with molecular oxygen through graphene photocatalytic oxidation. Applied Catalysis B: Environmental, 2017, 209: 98–109CrossRefGoogle Scholar
  55. 55.
    Qin L, Zheng Y, Li D, Zhou Y, Zhang L, Zuhra Z. Phosphotungstic acid immobilized on amino functionalized spherical millimeter-sized mesoporous gamma-Al2O3 bead and its superior performance in oxidative desulfurization of dibenzothiophene. Fuel, 2016, 181: 827–835CrossRefGoogle Scholar
  56. 56.
    Yang H, Jiang B, Sun Y, Zhang L, Huang Z, Sun Z, Yang N. Heterogeneous oxidative desulfurization of diesel fuel catalyzed by mesoporous polyoxometallate-based polymeric hybrid. Journal of Hazardous Materials, 2017, 333: 63–72PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Dizaji A K, Mokhtarani B, Mortaheb H R. Deep and fast oxidative desulfurization of fuels using graphene oxide-based phosphotungstic acid catalysts. Fuel, 2019, 236: 717–729CrossRefGoogle Scholar
  58. 58.
    Zhang M, Zhu W, Xun S, Li H, Gu Q, Zhao Z, Wang Q. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids. Chemical Engineering Journal, 2013, 220: 328–336CrossRefGoogle Scholar
  59. 59.
    Zhang X, Zhu Y, Huang P, Zhu M. Phosphotungstic acid on zirconia-modified silica as catalyst for oxidative desulfurization. RSC Advances, 2016, 6(73): 69357–69364CrossRefGoogle Scholar
  60. 60.
    Yan X M, Mei P, Lei J, Mi Y, Xiong L, Guo L. Synthesis and characterization of mesoporous phosphotungstic acid/TiO2 nanocomposite as a novel oxidative desulfurization catalyst. Journal of Molecular Catalysis A: Chemical, 2009, 304(1–2): 52–57CrossRefGoogle Scholar
  61. 61.
    Ribeiro S, Barbosa A D S, Gomes A C, Pillinger M, Gonçalves I S, Cunha-Silva L, Balula S S. Catalytic oxidative desulfurization systems based on Keggin phosphotungstate and metal-organic framework MIL-101. Fuel Processing Technology, 2013, 116: 350–357CrossRefGoogle Scholar
  62. 62.
    Li B, Liu Z, Liu J, Zhou Z, Gao X, Pang X, Sheng H. Preparation, characterization and application in deep catalytic ODS of the mesoporous silica pillared clay incorporated with phosphotungstic acid. Journal of Colloid and Interface Science, 2011, 362(2): 450–456PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ji H, Sun J, Wu P, Dai B, Chao Y, Zhang M, Jiang W, Zhu W, Li H. Deep oxidative desulfurization with a microporous hexagonal boron nitride confining phosphotungstic acid catalyst. Journal of Molecular Catalysis A Chemical, 2016, 423: 207–215CrossRefGoogle Scholar
  64. 64.
    Wang R, Yu F, Zhang G, Zhao H. Performance evaluation of the carbon nanotubes supported Cs2.5H0.5PW12O40 as efficient and recoverable catalyst for the oxidative removal of dibenzothiophene. Catalysis Today, 2010, 150(1–2): 37–41CrossRefGoogle Scholar
  65. 65.
    Bazyari A, Khodadadi A A, Haghighat Mamaghani A, Beheshtian J, Thompson L T, Mortazavi Y. Microporous titania-silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization. Applied Catalysis B: Environmental, 2016, 180: 65–77CrossRefGoogle Scholar
  66. 66.
    Yang S T, Jeong K E, Jeong S Y, Ahn W S. Synthesis of mesoporous TS-1 using a hybrid SiO2-TiO2 xerogel for catalytic oxidative desulfurization. Materials Research Bulletin, 2012, 47(12): 4398–4402CrossRefGoogle Scholar
  67. 67.
    Wang J, Zhang L, Sun Y, Jiang B, Chen Y, Gao X, Yang H. Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel Processing Technology, 2018, 177: 81–88CrossRefGoogle Scholar
  68. 68.
    Du S, Li F, Sun Q, Wang N, Jia M, Yu J. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chemical Communications, 2016, 52(16): 3368–3371PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Xun S, Zhu W, Chang Y, Li H, Zhang M, Jiang W, Zheng D, Qin Y, Li H. Synthesis of supported SiW12O40-based ionic liquid catalyst induced solvent-free oxidative deep-desulfurization of fuels. Chemical Engineering Journal, 2016, 288: 608–617CrossRefGoogle Scholar
  70. 70.
    Wang C, Zhu W, Chen Z, Yin S, Wu P, Xun S, Jiang W, Zhang M, Li H. Light irradiation induced aerobic oxidative deep-desulfurization of fuel in ionic liquid. RSC Advances, 2015, 5(121): 99927–99934CrossRefGoogle Scholar
  71. 71.
    Li H, Zhu W, Wang Y, Zhang J, Lu J, Yan Y. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride. Green Chemistry, 2009, 11(6): 810–815CrossRefGoogle Scholar
  72. 72.
    Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy & Fuels, 2000, 14(6): 1232–1239CrossRefGoogle Scholar
  73. 73.
    Zeng X, Mo G, Wang H, Zhou R, Zhao C. Oxidation mechanism of dibenzothiophene compounds: A computational study. Computational & Theoretical Chemistry, 2014, 1037: 22–27CrossRefGoogle Scholar
  74. 74.
    Li H, Zhu W, Zhu S, Xia J, Chang Y, Jiang W, Zhang M, Zhou Y, Li H. The selectivity for sulfur removal from oils: An insight from conceptual density functional theory. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(6): 2087–2100CrossRefGoogle Scholar
  75. 75.
    Kalantari K, Kalbasi M, Sohrabi M, Royaee S J. Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light. Ceramics International, 2016, 42(13): 14834–14842CrossRefGoogle Scholar
  76. 76.
    Yue D, Lei J, Lina Z, Zhenran G, Du X, Li J. Oxidation desulfurization of fuels by using amphiphilic hierarchically meso/macroporous phosphotungstic acid/SiO2 catalysts. Catalysis Letters, 2018, 148(4): 1100–1109CrossRefGoogle Scholar
  77. 77.
    Liu S, Zhao F, Sun H, Liu X, Cui B. Iron promotion of V-HMS mesoporous catalysts for ultra-deep oxidative desulfurization. Applied Organometallic Chemistry, 2018, 32(2): e4082CrossRefGoogle Scholar
  78. 78.
    Wang L, Li S, Cai H, Xu Y, Wu X, Chen Y. Ultra-deep desulfurization of fuel with metal complex of Chitosan Schiff base assisted by ultraviolet. Fuel, 2012, 94: 165–169CrossRefGoogle Scholar
  79. 79.
    Jiang B, Yang H, Zhang L, Zhang R, Sun Y, Huang Y. Efficient oxidative desulfurization of diesel fuel using amide-based ionic liquids. Chemical Engineering Journal, 2016, 283: 89–96CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical EngineeringGuangdong University of Petrochemical TechnologyMaomingChina

Personalised recommendations