Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Diversity-oriented synthesis of blue emissive nitrogen heterocycles and their conjugation with carbon nano-onions

Abstract

The search for new fluorescent molecules for possible applications as functional π-electron systems and their conjugation with different nanomaterials is nowadays of paramount importance to broaden the availability of materials with different properties. Herein we present a diversity-oriented approach to heterocyclic luminophores based on a multicomponent Ugi reaction followed by a Pd-mediated cascade sequence. The new molecules are coupled to carbon nano-onions, and hybrid systems represent the first example of blue emitters conjugated with these carbon nanoparticles.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162–163

  2. 2.

    Ugarte D. Curling and closure of graphitic networks under electronbeam irradiation. Nature, 1992, 359(6397): 707–709

  3. 3.

    Ugarte D. Onion-like graphitic particles. Carbon, 1995, 33(7): 989–993

  4. 4.

    Mykhailiv O, Zubyk H, Plonska-Brzezinska M E. Carbon nanoonions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorganica Chimica Acta, 2017, 468: 49–66

  5. 5.

    Palkar A, Melin F, Cardona C M, Elliott B, Naskar A K, Edie D D, Kumbhar A, Echegoyen L. Reactivity differences between carbon nano onions (cnos) prepared by different methods. Chemistry, an Asian Journal, 2007, 2(5): 625–633

  6. 6.

    Kuznetsov V L, Zilberberg I L, Butenko Y V, Chuvilin A L, Segall B. Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. Journal of Applied Physics, 1999, 86(2): 863–870

  7. 7.

    Sano N, Wang H, Alexandrou I, Chhowalla M, Teo K B K, Amaratunga G A J, Iimura K. Properties of carbon onions produced by an arc discharge in water. Journal of Applied Physics, 2002, 92 (5): 2783–2788

  8. 8.

    Alexandrou I, Wang H, Sano N, Amaratunga G A J. Structure of carbon onions and nanotubes formed by arc in liquids. Journal of Chemical Physics, 2004, 120(2): 1055–1058

  9. 9.

    Dorobantu D, Bota P M, Boerasu I, Bojin D, Enachescu M. Pulse laser ablation system for carbon nano-onions fabrication. Surface Engineering and Applied Electrochemistry, 2014, 50(5): 390–394

  10. 10.

    Chen X H, Deng F M, Wang J X, Yang H S, Wu G T, Zhang X B, Peng J C, Li W Z. New method of carbon onion growth by radiofrequency plasma-enhanced chemical vapor deposition. Chemical Physics Letters, 2001, 336(3): 201–204

  11. 11.

    Bartelmess J, Giordani S. Carbon nano-onions (multi-layer fullerenes): Chemistry and applications. Beilstein Journal of Nanotechnology, 2014, 5: 1980–1998

  12. 12.

    Georgakilas V, Guldi D M, Signorini R, Bozio R, Prato M. Organic functionalization and optical properties of carbon onions. Journal of the American Chemical Society, 2003, 125(47): 14268–14269

  13. 13.

    Liu Y, Vander Wal R L, Khabashesku V N. Functionalization of carbon nano-onions by direct fluorination. Chemistry of Materials, 2007, 19(4): 778–786

  14. 14.

    Rettenbacher A S, Perpall M W, Echegoyen L, Hudson J, Smith D W. Radical addition of a conjugated polymer to multilayer fullerenes (carbon nano-onions). Chemistry of Materials, 2007, 19 (6): 1411–1417

  15. 15.

    Cioffi C T, Palkar A, Melin F, Kumbhar A, Echegoyen L, Melle-Franco M, Zerbetto F, Rahman G M A, Ehli C, Sgobba V, Guldi D M, Prato M. A carbon nano-onion-ferrocene donor-acceptor system: Synthesis, characterization and properties. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(17): 4419–4427

  16. 16.

    Zhou L, Gao C, Zhu D, Xu W, Chen F F, Palkar A, Echegoyen L, Kong E S W. Facile functionalization of multilayer fullerenes (carbon nano-onions) by nitrene chemistry and “grafting from” strategy. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(6): 1389–1396

  17. 17.

    Flavin K, Chaur M N, Echegoyen L, Giordani S. Functionalization of multilayer fullerenes (carbon nano-onions) using diazonium compounds and “click” chemistry. Organic Letters, 2010, 12(4): 840–843

  18. 18.

    Tomita S, Fujii M, Hayashi S, Yamamoto K. Electron energy-loss spectroscopy of carbon onions. Chemical Physics Letters, 1999, 305 (3): 225–229

  19. 19.

    Chhowalla M,Wang H, Sano N, Teo K B K, Lee S B, Amaratunga G A J. Carbon onions: Carriers of the 217.5 nm interstellar absorption feature. Physical Review Letters, 2003, 90(15): 155504

  20. 20.

    Sek S, Breczko J, Plonska-Brzezinska M E, Wilczewska A Z, Echegoyen L. STM-based molecular junction of carbon nano-onion. ChemPhysChem, 2013, 14(1): 96–100

  21. 21.

    Zeiger M, Jäckel N, Aslan M, Weingarth D, Presser V. Understanding structure and porosity of nanodiamond-derived carbon onions. Carbon, 2015, 84: 584–598

  22. 22.

    Shenderova O, Tyler T, Cunningham G, Ray M, Walsh J, Casulli M, Hens S, McGuire G, Kuznetsov V, Lipa S. Nanodiamond and onion-like carbon polymer nanocomposites. Diamond and Related Materials, 2007, 16(4): 1213–1217

  23. 23.

    Macutkevic J, Adomavicius R, Krotkus A, Seliuta D, Valusis G, Maksimenko S, Kuzhir P, Batrakov K, Kuznetsov V, Moseenkov S, Shenderova O, Okotrub A V, Langlet R, Lambin P. Terahertz probing of onion-like carbon-PMMA composite films. Diamond and Related Materials, 2008, 17(7): 1608–1612

  24. 24.

    Bartolome J P, Echegoyen L, Fragoso A. Reactive carbon nanoonion modified glassy carbon surfaces as DNA sensors for human papillomavirus oncogene detection with enhanced sensitivity. Analytical Chemistry, 2015, 87(13): 6744–6751

  25. 25.

    Maffeis V, McCourt R O, Petracca R, Laethem O, Camisasca A, Colavita P E, Giordani S, Scanlan E M. Photocatalytic initiation of radical thiol-ene reactions using carbon-B2O3 nanocomposites. ACS Applied Nano Materials, 2018, 1(8): 4120–4126

  26. 26.

    Zeiger M, Jäckel N, Mochalin V N, Presser V. Review: Carbon onions for electrochemical energy storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(9): 3172–3196

  27. 27.

    Zheng D, Yang G, Zheng Y, Fan P, Ji R, Huang J, Zhang W, Yu J. Carbon nano-onions as a functional dopant to modify hole transporting layers for improving stability and performance of planar perovskite solar cells. Electrochimica Acta, 2017, 247: 548–557

  28. 28.

    D’Amora M, Rodio M, Bartelmess J, Sancataldo G, Brescia R, Cella Zanacchi F, Diaspro A, Giordani S. Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model. Scientific Reports, 2016, 6(1): 33923

  29. 29.

    D’Amora M, Camisasca A, Lettieri S, Giordani S. Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials (Basel, Switzerland), 2017, 7(12): 414

  30. 30.

    Trusel M, Baldrighi M, Marotta R, Gatto F, Pesce M, Frasconi M, Catelani T, Papaleo F, Pompa P P, Tonini R, Giordani S. Internalization of carbon nano-onions by hippocampal cells preserves neuronal circuit function and recognition memory. ACS Applied Materials & Interfaces, 2018, 10(20): 16952–16963

  31. 31.

    Lettieri S, d’Amora M, Camisasca A, Diaspro A, Giordani S. Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics. Beilstein Journal of Nanotechnology, 2017, 8: 1878–1888

  32. 32.

    Müller T J J, Bunz U H F. Functional Organic Materials. Syntheses, Strategies, and Applications. Weinheim: Wiley-VCH, 2007

  33. 33.

    Arcudi F, Ðorđević L, Prato M. Rationally designed carbon nanodots towards pure white-light rmission. Angewandte Chemie International Edition, 2017, 56(15): 4170–4173

  34. 34.

    Frasconi M, Marotta R, Markey L, Flavin K, Spampinato V, Ceccone G, Echegoyen L, Scanlan E M, Giordani S. Multifunctionalized carbon nano-onions as imaging probes for cancer cells. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21 (52): 19071–19080

  35. 35.

    Bartelmess J, Baldrighi M, Nardone V, Parisini E, Buck D, Echegoyen L, Giordani S. Synthesis and characterization of far-red/NIR-fluorescent BODIPY dyes, solid-state fluorescence, and application as fluorescent tags attached to carbon nano-onions. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(27): 9727–9732

  36. 36.

    Lettieri S, Camisasca A, d’Amora M, Diaspro A, Uchida T, Nakajima Y, Yanagisawa K, Maekawa T, Giordani S. Far-red fluorescent carbon nano-onions as a biocompatible platform for cellular imaging. RSC Advances, 2017, 7(72): 45676–45681

  37. 37.

    Liu Y, Kim D Y. Ultraviolet and blue emitting graphene quantum dots synthesized from carbon nano-onions and their comparison for metal ion sensing. Chemical Communications, 2015, 51(20): 4176–4179

  38. 38.

    Müllen K, Scherf U. Organic light-emitting diodes—synthesis, properties, and applications. Weinheim: Wiley-VCH, 2006

  39. 39.

    Zhu M, Yang C. Blue fluorescent emitters: Design tactics and applications in organic light-emitting diodes. Chemical Society Reviews, 2013, 42(12): 4963–4976

  40. 40.

    Kuma H, Hosokawa C. Blue fluorescent OLED materials and their application for high-performance devices. Science and Technology of Advanced Materials, 2014, 15(3): 34201

  41. 41.

    Yang X, Xu X, Zhou G. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(5): 913–944

  42. 42.

    Bui T T, Goubard F, Ibrahim-Ouali M, Gigmes D, Dumur F. Thermally activated delayed fluorescence emitters for deep blue organic light emitting diodes: A review of recent advances. Applied Sciences (Basel, Switzerland), 2018, 8(4): 494

  43. 43.

    Froehlich J D, Young R, Nakamura T, Ohmori Y, Li S, Mochizuki A, Lauters M, Jabbour G E. Synthesis of Multi-Functional POSS Emitters for OLED Applications. Chemistry of Materials, 2007, 19 (20): 4991–4997

  44. 44.

    Krujatz F, Hild O R, Fehse K, Jahnel M, Werner A, Bley T. Exploiting the potential of oled-based photo-organic sensors for biotechnological applications. Chemical Sciences Journal, 2016, 7 (3): 134

  45. 45.

    Cairo C W, Key J A, Sadek C M. Fluorescent small-molecule probes of biochemistry at the plasma membrane. Current Opinion in Chemical Biology, 2010, 14(1): 57–63

  46. 46.

    Hong Y, Häußler M, Lam J W Y, Li Z, Sin K K, Dong Y, Tong H, Liu J, Qin A, Renneberg R, Tang B Z. Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of dna folding by a quaternized tetraphenylethene salt with aggregationinduced emission characteristics. Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14(21): 6428–6437

  47. 47.

    Kuznetsov V L, Chuvilin A L, Butenko Y V, Mal’kov I Y, Titov V M. Onion-like carbon from ultra-disperse diamond. Chemical Physics Letters, 1994, 222(4): 343–348

  48. 48.

    Frasconi M, Maffeis V, Bartelmess J, Giordani S. Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods and Applications in Fluorescence, 2015, 3(4): 0044005

  49. 49.

    Moni L, Gers-Panther C F, Anselmo M, Müller T J J, Riva R. Highly convergent synthesis of intensively blue emissive furo[2,3-c] isoquinolines by a palladium-catalyzed cyclization cascade of unsaturated Ugi products. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(6): 2020–2031

  50. 50.

    Dömling A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chemical Reviews, 2006, 106(1): 17–89

  51. 51.

    Hu R, Leung N L C, Tang B Z. AIE macromolecules: Syntheses, structures and functionalities. Chemical Society Reviews, 2014, 43 (13): 4494–4562

  52. 52.

    Banfi L, Basso A, Giardini L, Riva R, Rocca V, Guanti G. Tandem Ugi MCR/Mitsunobu cyclization as a short, protecting-group-free route to benzoxazinones with four diversity points. European Journal of Organic Chemistry, 2010, 2011(1): 100–109

  53. 53.

    Söveges B, Imre T, Póti Á L, Sok P, Kele Z, Alexa A, Kele P, Németh K. Tracking down protein—protein interactions via a FRET-system using site-specific thiol-labeling. Organic & Biomolecular Chemistry, 2018, 16(32): 5756–5763

  54. 54.

    Bartelmess J, De Luca E, Signorelli A, Baldrighi M, Becce M, Brescia R, Nardone V, Parisini E, Echegoyen L, Pompa P P, et al. Boron dipyrromethene (BODIPY) functionalized carbon nanoonions for high resolution cellular imaging. Nanoscale, 2014, 6(22): 13761–13769

  55. 55.

    Giordani S, Bartelmess J, Frasconi M, Biondi I, Cheung S, Grossi M, Wu D, Echegoyen L, O’Shea D F. NIR fluorescence labelled carbon nano-onions: Synthesis, analysis and cellular imaging. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(42): 7459–7463

Download references

Acknowledgements

Istituto Italiano di Tecnologia and the University of Genova are gratefully acknowledged for financial support. S.G. acknowledges the COST Action CA 15107 “Multi-Functional Nano-Carbon Composite Materials Network (MultiComp)”. The authors wish to thank Prof. Luis Echegoyen (UTEP) for supervising V.M. in the synthesis of pristine CNOs.

Author information

Correspondence to Silvia Giordani or Renata Riva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maffeis, V., Moni, L., Di Stefano, D. et al. Diversity-oriented synthesis of blue emissive nitrogen heterocycles and their conjugation with carbon nano-onions. Front. Chem. Sci. Eng. 14, 76–89 (2020). https://doi.org/10.1007/s11705-019-1833-0

Download citation

Keywords

  • carbon nano-onions
  • multicomponent reactions
  • blue emitters
  • fluorescence
  • isoquinolines