Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water

  • Feichao Wu
  • Yanling Wang
  • Xiongfu ZhangEmail author
Research Article


In this work, a thin zirconium-based UiO-66 membrane was successfully prepared on an alumina hollow fiber tube by flow synthesis, and was used in an attempt to remove p-nitrophenol from water through a nanofiltration process. Two main factors, including flow rate and synthesis time, were investigated to optimize the conditions for membrane growth. Under optimal synthesis conditions, a thin UiO-66 membrane of approximately 2 μm in thickness was fabricated at a flow rate of 4 mL·h-1 for 30 h. The p-nitrophenol rejection rate for the as-prepared UiO-66 membrane applied in the removal of p-nitrophenol from water was only 78.1% due to the existence of membrane defects caused by coordinative defects during membrane formation. Post-synthetic modification of the UiO-66 membrane was carried out using organic linkers with the same flow approach to further improve the nanofiltration performance. The result showed that the p-nitrophenol rejection for the postmodified membrane was greatly improved and reached over 95%. Moreover, the post-modified UiO-66 membrane exhibited remarkable long-term operational stability, which is vital for practical application.


UiO-66 membrane flow synthesis nanofiltration p-nitrophenol removal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 21476039, 21878032 and 21076030).

Supplementary material

11705_2019_1819_MOESM1_ESM.pdf (244 kb)
Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water


  1. 1.
    Sun Y, Zhou J, Cai W, Zhao R, Yuan J. Hierarchically porous NiAl-LDH nanoparticles as highly efficient adsorbent for p-nitrophenol from water. Applied Surface Science, 2015, 349: 897–903CrossRefGoogle Scholar
  2. 2.
    Chen Y, Sun F, Huang Z, Chen H, Zhuang Z, Pan Z, Long J, Gu F. Photochemical fabrication of SnO2 dense layers on reduced graphene oxide sheets for application in photocatalytic degradation of p-Nitrophenol. Applied Catalysis B: Environmental, 2017, 215: 8–17CrossRefGoogle Scholar
  3. 3.
    Busca G, Berardinelli S, Resini C, Arrighi L. Technologies for the removal of phenol from fluid streams: A short review of recent developments. Journal of Hazardous Materials, 2008, 160(2]2-3): 265–288CrossRefGoogle Scholar
  4. 4.
    Hamidouche S, Bourasa O, Zermanea F, Cheknane B, Houari M, Debord J, Harel M, Bollinger J C, Baudu M. Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geo-composite based on surfactant modified pillared-clay and activated carbon. Chemical Engineering Journal, 2015, 279: 964–972CrossRefGoogle Scholar
  5. 5.
    Guo P, Tang L, Tang J, Zeng G, Huang B, Dong H, Zhang Y, Zhou Y, Deng Y, Ma L, et al. Catalytic reduction-adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gol-nanoparticles supported on oxidized mesoporous carbon. Journal of Colloid and Interface Science, 2016, 469: 78–85CrossRefGoogle Scholar
  6. 6.
    Yang X, Li Y, Zhang P, Zou R, Peng H, Liu D, Gui J. Photoinduced in situ deposition of uniform and well-dispersed PtO2 nanoparticles on ZnO nanorods for efficient catalytic reduction of 4-nitrophenol. ACS Applied Materials & Interfaces, 2018, 10(27): 23154–23162CrossRefGoogle Scholar
  7. 7.
    Sun J, Xu J, Grafmueller A, Huang X, Liedel C, Algara-Siller G, Willinger M, Yang C, Fu Y, Wang X, et al. Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. Applied Catalysis B: Environmental, 2017, 205: 1–10CrossRefGoogle Scholar
  8. 8.
    Yu X F, Mao L B, Ge J, Yu Z L, Liu JW, Yu S H. Three-dimensional melamine sponge loaded with Au/ceria nanowires for continuous reduction of p-nitrophenol in a consecutive flow system. Science Bulletin, 2016, 61(9): 700–705CrossRefGoogle Scholar
  9. 9.
    Jing Q, Yi Z, Lin D, Zhu L, Yang K. Enhanced sorption of naphthalene and p-nitrophenol by nano-SiO2 modified with a cationic surfactant. Water Research, 2013, 47(12): 4006–4012CrossRefGoogle Scholar
  10. 10.
    Ribeiro R S, Silva A M, Figueiredo J L, Faria J L, Gomes H T. Removal of 2-nitrophenol by catalytic wet peroxide oxidation using carbon materials with different morphological and chemical properties. Applied Catalysis B: Environmental, 2013, 356: 140–141Google Scholar
  11. 11.
    Zhang X, Yang Y, Lu Y, Wen Y, Li P, Zhang G. Bioaugmented soil aquifer treatment for p-nitrophenol removal in wastewater unique for cold regions. Water Research, 2018, 144: 616–627CrossRefGoogle Scholar
  12. 12.
    Jia Z, Jiang M, Wu G. Amino-MIL-53(Al) sandwich-structure membranes for adsorption of p-nitrophenol from aqueous solutions. Chemical Engineering Journal, 2017, 307: 283–290CrossRefGoogle Scholar
  13. 13.
    Wang G, Huang F, Chen X,Wen S, Gong C, Liu H, Cheng F, Zheng X, Zheng G, Pan M. Density functional studies of zirconia with different crystal phases for oxygen reduction reaction. RSC Advances, 2015, 5(103): 85122–85127CrossRefGoogle Scholar
  14. 14.
    Lee B, Baek Y, Lee M, Jeong D H, Lee H H, Yoon J, Kim Y H. Carbon nanotube wall membrane for water treatment. Nature Communications, 2015, 6(1): 7109–7115CrossRefGoogle Scholar
  15. 15.
    Glater J, Hong S K, Elimelech M. The search for a chloring-resistant reverse osmosis membrane. Desalination, 1994, 95(3): 325–345CrossRefGoogle Scholar
  16. 16.
    El-Saied H, Basta A H, Barsoum B N, Elberry M M. Cellulose membranes for reverse osmosis Part I. RO cellulose acetate membranes including a composite with polypropylene. Desalination, 2003, 159(2): 171–181CrossRefGoogle Scholar
  17. 17.
    Imasaka S, Itakura M, Yano K, Fujita S, Okada M, Hasegawa Y, Abe C, Araki S, Yamamoto H. Rapid preparation of high-silica CHA-type zeolite membranes and their separation properties. Separation and Purification Technology, 2018, 199: 298–303CrossRefGoogle Scholar
  18. 18.
    Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chemical Reviews, 2012, 112(2): 933–969CrossRefGoogle Scholar
  19. 19.
    Maurin G, Serre C, Copper A, Férey G. The new age of MOFs and of their porous-related solids. Chemical Society Reviews, 2017, 46 (11): 3104–3107CrossRefGoogle Scholar
  20. 20.
    Garibay J S, Cohen S M. Synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 2010, 46 (41): 7700–7702CrossRefGoogle Scholar
  21. 21.
    Lau C H, Babarao R, Hill M R. A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. Chemical Communications, 2013, 49(35): 3634–3636CrossRefGoogle Scholar
  22. 22.
    Wang X, Zhai L, Wang Y, Li R, Gu X, Yuan Y, Qian Y, Hu Z, Zhao D. Improving water-treatment performance of zirconium metalorganic framework membranes by post-synthetic defect healing. ACS Applied Materials & Interfaces, 2017, 9(43): 37848–37855CrossRefGoogle Scholar
  23. 23.
    Liu X, Demir N K, Wu Z, Li K. Highly water-stable zirconium metal-organic framework UiO-66 membrane supported on alumina hollow fiber desalination. Journal of the American Chemical Society, 2015, 137(22): 6999–7002CrossRefGoogle Scholar
  24. 24.
    Wu F, Lin L, Liu H, Wang H, Qiu J, Zhang X. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/ methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544: 342–350CrossRefGoogle Scholar
  25. 25.
    Wu F, Cao Y, Liu H, Zhang X. High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. Journal of Membrane Science, 2018, 556: 54–65CrossRefGoogle Scholar
  26. 26.
    Miyamoto M, Hori K, Goshima T, Takaya N, Oumi Y, Uemiya S. An organo-selective zirconium-based metal-organic-framework UiO-66 membrane for pervaporation. European Journal of Organic Chemistry, 2017, 14: 2094–2099CrossRefGoogle Scholar
  27. 27.
    Zhang H, Hou J, Hu Y,Wang P, Ou R, Jiang L, Liu J, Freeman B D, Hill A J, Wang H. Ultrafast selective transport of alkali metal ions in metal organic frameworks with sub-nanometer pores. Science Advances, 2018, 4(2): 0066–0073Google Scholar
  28. 28.
    Furukawa H, Gandara H, Zhang Y, Jiang J, Queen W L, Hudson M R, Yaghi O M. Water adsorption in porous metal-organic frameworks and related materials. Journal of the American Chemical Society, 2014, 136(11): 4369–4381CrossRefGoogle Scholar
  29. 29.
    Lv G, Liu J, Xiong Z, Zhang Z, Guan Z. Selectivity adsorptive mechanism of different nitrophenols on UiO-66 and UiO-66-NH2 in aqueous solution. Journal of Chemical & Engineering Data, 2016, 61(11): 3868–3876CrossRefGoogle Scholar
  30. 30.
    Yang Q, Zhao Q, Ren S S, Chen Z, Zheng H. Assembly of Zr-MOF crystals onto magnetic beads as a highly adsorbent for recycling nitrophenol. Chemical Engineering Journal, 2017, 232: 74–83CrossRefGoogle Scholar
  31. 31.
    Li Y, Lin L, Tu M, Nian P, Howarth A J, Farha O J, Qiu J, Zhang X. Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Research, 2018, 11(4): 1850–1860CrossRefGoogle Scholar
  32. 32.
    Li J, Wu F, Lin L, Guo Y, Liu H, Zhang X. Flow fabrication of a highly efficient Pd/UiO-66-NH2 film capillary microreactor for 4-nitrophenol reduction. Chemical Engineering Journal, 2018, 333: 146–152CrossRefGoogle Scholar
  33. 33.
    Kong Y, Zhang X, Liu Y, Li S, Liu H, Qiu J, Yeung K L. In situ fabrication of high-permeance ZIF-8 tubular membranes in a continuous flow system. Materials Chemistry and Physics, 2014, 148(1–2): 10–16CrossRefGoogle Scholar
  34. 34.
    Kong L, Zhang G, Liu H, Zhang X. APTES-assisted synthesis of ZIF-8 films on the inner surface of capillary quartz tubes via flow system. Materials Letters, 2015, 141: 344–346CrossRefGoogle Scholar
  35. 35.
    Marti AM, Wickramanayake WW, Dahe G, Sekizkardes A, Bank T L, Hopkinson P, Venna S R. Continuous flow processing of ZIF-8 membranes on polymeric porous hollow fiber supports for CO2 Capture. ACS Applied Materials & Interfaces, 2017, 9(7): 5678–5682CrossRefGoogle Scholar
  36. 36.
    Ju J, Zeng C, Zhang L, Xu N. Continuous synthesis of zeolite NaA in a microchannel reactor. Chemical Engineering Journal, 2006, 116 (2): 115–121CrossRefGoogle Scholar
  37. 37.
    Titus MP, Bausach M, Llorens J, Cunill F. Preparation of inner-side tubular zeolite NaA membranes in a continuous flow system. Separation and Purification Technology, 2018, 59: 141–150Google Scholar
  38. 38.
    Pina M P, Arruebo M, Felipe M, Fleta F, Bernal M P, Coronas J, Menendez M, Santamaria J. A semi-continuous method for the synthesis of NaA zeolite membranes on tubular supports. Journal of Membrane Science, 2004, 244(1–2): 141–150CrossRefGoogle Scholar
  39. 39.
    Aguado S, Gascón J, Jansen J C, Kapteijn F. Continuous synthesis of NaA zeolite membranes. Microporous and Mesoporous Materials, 2009, 120(1–2): 170–176CrossRefGoogle Scholar
  40. 40.
    De Stefano M, Islamouglu T, Garibay S, Hupp J, Farha O. Roomtemperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chemistry of Materials, 2017, 29(3): 1357-1361CrossRefGoogle Scholar
  41. 41.
    Trickett C A, Gagnon K J, Lee S, Gándara F, Bürgi H B, Yaghi OM. Definitive molecular level characterization of defects in UiO-66 crystals. Angewandte Chemie International Edition, 2015, 127(38): 11162–11167CrossRefGoogle Scholar
  42. 42.
    Katz M J, Brown Z J, Colón Y J, Siu P W, Scheidt K A, Snurr R Q, Hupp J T, Farha O K. A Facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications, 2013, 49(82): 9449–9451CrossRefGoogle Scholar
  43. 43.
    Deria P, Mondloch J E, Karagiaridi O, Bury W, Hupp J T, Farha O K. Beyond post-synthesis modification: Evolution of metal-organic frameworks via building block replacement. Chemical Society Reviews, 2014, 43(16): 5896–5912CrossRefGoogle Scholar
  44. 44.
    Denny M S Jr, Cohen S M. In situ modification of metal-organic frameworks in mixed-matrix membranes. Angewandte Chemie International Edition, 2015, 54(31): 9029–9032CrossRefGoogle Scholar
  45. 45.
    Marshall R J, Forgan R S. Post-synthetic modification of zirconium metal-organic frameworks. European Journal of Organic Chemistry, 2015, 27: 4310–4331Google Scholar
  46. 46.
    Denny M S, Moreton J C, Benz L, Cohen S M C. Metal-organic frameworks for membrane-based separation. Nature Reviews Materials, 2016, 1(12): 16078–16093CrossRefGoogle Scholar
  47. 47.
    Vieira R S, Beppu M M. Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres. Water Research, 2006, 40(8): 1726–1734CrossRefGoogle Scholar
  48. 48.
    Liu B, Yang F, Zou Y, Peng Y. Adsorption of phenol and p-nitrophenol from aqueous solutions on metal-organic frameworks: Effect of hydrogen bonding. Journal of Chemical & Engineering Data, 2014, 59(5): 1476–1482CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations