Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review

  • Aswathy Vasudevan
  • Vasyl Shvalya
  • Aleksander Zidanšek
  • Uroš CvelbarEmail author
Review Article


Since graphene has been discovered, two-dimensional nanomaterials have attracted attention due to their promising tunable electronic properties. The possibility of tailoring electrical conductivity at the atomic level allows creating new prospective 2D structures for energy harvesting and sensing-related applications. In this respect, one of the most successful way to manipulate the physical properties of the aforementioned materials is related to the surface modification techniques employing plasma. Moreover, plasma-gaseous chemical treatment can provide a controlled change in the bandgap, increase sensitivity and significantly improve the structural stability of material to the environment as well. This review deals with recent advances in the modification of 2D carbon nanostructures for novel ‘edge’ electronics using plasma technology and processes.


graphene edge electronics 2D nanomaterials plasma electrical conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tiwari J N, Tiwari R N, Kim K S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 2012, 57(4): 724–803CrossRefGoogle Scholar
  2. 2.
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M, Grigorieva I, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200CrossRefPubMedGoogle Scholar
  3. 3.
    Dutta S, Pati S K. Novel properties of graphene nanoribbons: A review. Journal of Materials Chemistry, 2010, 20(38): 8207–8223CrossRefGoogle Scholar
  4. 4.
    Li Y, Jiang X, Liu Z, Liu Z. Strain effects in graphene and graphene nanoribbons: The underlying mechanism. Nano Research, 2010, 3(8): 545–556CrossRefGoogle Scholar
  5. 5.
    Pereira V M, Neto A C. Strain engineering of graphene’s electronic structure. Physical Review Letters, 2009, 103(4): 046801CrossRefPubMedGoogle Scholar
  6. 6.
    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9(12): 11509–11539CrossRefPubMedGoogle Scholar
  7. 7.
    Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F. 2D Materials: To graphene and beyond. Nanoscale, 2011, 3(1): 20–30CrossRefPubMedGoogle Scholar
  8. 8.
    Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805CrossRefPubMedGoogle Scholar
  9. 9.
    Lukowski M A, Daniel A S, English C R, Meng F, Forticaux A, Hamers R J, Jin S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy & Environmental Science, 2014, 7(8): 2608–2613CrossRefGoogle Scholar
  10. 10.
    Andriotis A N, Menon M. Tunable magnetic properties of transition metal doped MoS2. Physical Review B, 2014, 90(12): 125304CrossRefGoogle Scholar
  11. 11.
    He J, Hummer K, Franchini C. Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Physical Review B, 2014, 89(7): 075409CrossRefGoogle Scholar
  12. 12.
    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712CrossRefPubMedGoogle Scholar
  13. 13.
    Cao L, Yang S, Gao W, Liu Z, Gong Y, Ma L, Shi G, Lei S, Zhang Y, Zhang S, Vajtai R, Ajayan P M. Direct laser-patterned microsupercapacitors from paintable MoS2 films. Small, 2013, 9(17): 2905–2910CrossRefPubMedGoogle Scholar
  14. 14.
    Huang Y H, Peng C C, Chen R S, Huang Y S, Ho C H. Transport properties in semiconducting NbS2 nanoflakes. Applied Physics Letters, 2014, 105(9): 093106CrossRefGoogle Scholar
  15. 15.
    Moore D B, Beekman M, Disch S, Zschack P, Häusler I, Neumann W, Johnson D C. Synthesis, structure, and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chemistry of Materials, 2013, 25(12): 2404–2409CrossRefGoogle Scholar
  16. 16.
    Jeong S, Yoo D, Jang J T, Kim M, Cheon J. Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. Journal of the American Chemical Society, 2012, 134(44): 18233–18236CrossRefPubMedGoogle Scholar
  17. 17.
    Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730CrossRefGoogle Scholar
  18. 18.
    Hsu Y K, Chen Y C, Lin Y G, Chen L C, Chen K H. Birnessitetype manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light. Journal of Materials Chemistry, 2012, 22(6): 2733–2739CrossRefGoogle Scholar
  19. 19.
    Geim A K, Grigorieva I V. Van derWaals heterostructures. Nature, 2013, 499(7459): 419–425CrossRefPubMedGoogle Scholar
  20. 20.
    Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano, 2012, 6(8): 7311–7317CrossRefPubMedGoogle Scholar
  21. 21.
    Li H, Lu G, Wang Y, Yin Z, Cong C, He Q, Wang L, Ding F, Yu T, Zhang H. Mechanical exfoliation and characterization of singleand few-layer nanosheets of WSe2, TaS2, and TaSe2. Small, 2013, 9(11): 1974–1981CrossRefPubMedGoogle Scholar
  22. 22.
    Li H, Lu G, Yin Z, He Q, Li H, Zhang Q, Zhang H. Optical identification of single- and few-layer MoS2 sheets. Small, 2012, 8(5): 682–686CrossRefPubMedGoogle Scholar
  23. 23.
    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Letters, 2012, 12(11): 5576–5580CrossRefPubMedGoogle Scholar
  24. 24.
    Wang F, Wang Z, Wang Q, Wang F, Yin L, Xu K, Huang Y, He J. Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology, 2015, 26(29): 292001 1–7CrossRefPubMedGoogle Scholar
  25. 25.
    Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, Ma Y, Zhang X, Chen Y. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Advanced Materials, 2009, 21(12): 1275–1279CrossRefGoogle Scholar
  26. 26.
    Avouris P. Graphene: Electronic and photonic properties and devices. Nano Letters, 2010, 10(11): 4285–4294CrossRefPubMedGoogle Scholar
  27. 27.
    Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao X S. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 2013, 6(5): 1388–1414CrossRefGoogle Scholar
  28. 28.
    Huang Y, Liang J, Chen Y. An overview of the applications of graphene-based materials in supercapacitors. Small, 2012, 8(12): 1805–1834CrossRefPubMedGoogle Scholar
  29. 29.
    Lv W, Li Z, Deng Y, Yang Q H, Kang F. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2(1): 107–138CrossRefGoogle Scholar
  30. 30.
    Fratini S, Guinea F. Substrate-limited electron dynamics in graphene. Physical Review B, 2008, 77(19): 195415CrossRefGoogle Scholar
  31. 31.
    Prezzi D, Eom D, Rim K T, Zhou H, Lefenfeld M, Xiao S, Nuckolls C, Heinz T F, Flynn G W, Hybertsen M S. Edge structures for nanoscale graphene islands on Co (0001) surfaces. ACS Nano, 2014, 8(6): 5765–5773CrossRefPubMedGoogle Scholar
  32. 32.
    Liu H, Zhang X, Zhai T, Sander T, Chen L, Klar P J. Centimeterscale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures. Nanoscale, 2014, 6(10): 5099–5105CrossRefPubMedGoogle Scholar
  33. 33.
    Israr-Qadir M, Jamil-Rana S, Nur O, Willander M, Larsson L A, Holtz P O. Fabrication of ZnO nanodisks from structural transformation of ZnO nanorods through natural oxidation and their emission characteristics. Ceramics International, 2014, 40(1): 2435–2439CrossRefGoogle Scholar
  34. 34.
    Wang H, Guo Z, Wang S, Liu W. One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells. Thin Solid Films, 2014, 558: 1–19CrossRefGoogle Scholar
  35. 35.
    Yu X Y, Feng Y, Guan B, Lou X W D, Paik U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy & Environmental Science, 2016, 9(4): 1246–1250CrossRefGoogle Scholar
  36. 36.
    Peng L, Feng Y, Bai Y, Qiu H J, Wang Y. Designed synthesis of hollow Co3O4 nanoparticles encapsulated in a thin carbon nanosheet array for high and reversible lithium storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(16): 8825–8831CrossRefGoogle Scholar
  37. 37.
    Karakouz T, Holder D, Goomanovsky M, Vaskevich A, Rubinstein I. Morphology and refractive index sensitivity of gold island films. Chemistry of Materials, 2009, 21(24): 5875–5885CrossRefGoogle Scholar
  38. 38.
    Hiramatsu M, Shiji K, Amano H, Hori M. Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasmaenhanced chemical vapor deposition assisted by hydrogen radical injection. Applied Physics Letters, 2004, 84(23): 4708–4710CrossRefGoogle Scholar
  39. 39.
    Kargar A, Jing Y, Kim S J, Riley C T, Pan X, Wang D. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano, 2013, 7(12): 11112–11120CrossRefPubMedGoogle Scholar
  40. 40.
    Terrones H, Lv R, Terrones M, Dresselhaus M S. The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Reports on Progress in Physics, 2012, 75(6): 062501CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang X, Wang X B, Wang L W, Wang W K, Long L L, Li W W, Yu H Q. Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets. ACS Applied Materials & Interfaces, 2014, 6(10): 7766–7772CrossRefGoogle Scholar
  42. 42.
    Gao R, Yin L, Wang C, Qi Y, Lun N, Zhang L, Liu Y, Kang L, Wang X. High-yield synthesis of boron nitride nanosheets with strong ultraviolet cathodoluminescence emission. Journal of Physical Chemistry C, 2009, 113(34): 15160–15165CrossRefGoogle Scholar
  43. 43.
    Inamdar A I, Kim J, Jo Y, Woo H, Cho S, Pawar S M, Lee S, Gunjakar J, Cho Y, Hou B, et al. Highly efficient electro-optically tunable smart-supercapacitors using an oxygen-excess nanograin tungsten oxide thin film. Solar Energy Materials and Solar Cells, 2017, 166: 78–85CrossRefGoogle Scholar
  44. 44.
    Qu Y, Shao M, Shao Y, Yang M, Xu J, Kwok C T, Shi X, Lu Z, Pan H. Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(29): 15080–15086CrossRefGoogle Scholar
  45. 45.
    Tao J, Guan L. Tailoring the electronic and magnetic properties of monolayer SnO by B, C, N, O and F adatoms. Scientific Reports, 2017, 7: 44568CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Terrones M, Botello-Méndez A R, Campos-Delgado J, López-Urías F, Vega-Cantú Y I, Rodríguez-Macías F J, Elias Arriaga A L, Muñoz-Sandoval E, Cano-Márquez A G, Charlier J C, et al. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 2010, 5(4): 351–372CrossRefGoogle Scholar
  47. 47.
    Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872–876CrossRefPubMedGoogle Scholar
  48. 48.
    Li L. Epitaxial Graphene on SiC(0001): More Than Just Honeycombs, Physics and Applications of Graphene-Experiments. Sergey M, ed. Rijeka: InTech Europe, 2011, 55–72Google Scholar
  49. 49.
    Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325CrossRefPubMedGoogle Scholar
  50. 50.
    Zhao J, Pei S, Ren W, Gao L, Cheng H M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 2010, 4(9): 5245–5252CrossRefPubMedGoogle Scholar
  51. 51.
    Sols F, Guinea F, Neto A C. Coulomb blockade in graphene nanoribbons. Physical Review Letters, 2007, 99(16): 166803CrossRefPubMedGoogle Scholar
  52. 52.
    Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880CrossRefPubMedGoogle Scholar
  53. 53.
    Bai J, Huang Y. Fabrication and electrical properties of graphene nanoribbons. Materials Science and Engineering R Reports, 2010, 70(3–6): 341–353CrossRefGoogle Scholar
  54. 54.
    Li Z, Qian H, Wu J, Gu B L, Duan W. Role of symmetry in the transport properties of graphene nanoribbons under bias. Physical Review Letters, 2008, 100(20): 206802CrossRefPubMedGoogle Scholar
  55. 55.
    Boutahir M, El Majdoub S, Rahmani A H, Fakrach B, Chadli H, Rahmani A. Electronic properties of phosphorene nanoribbons. Energy Procedia, 2017, 139: 207–210CrossRefGoogle Scholar
  56. 56.
    Ning W, Kong F, Xi C, Graf D, Du H, Han Y, Yang J, Yang K, Tian M, Zhang Y. Evidence of topological two-dimensional metallic surface states in thin bismuth nanoribbons. ACS Nano, 2014, 8(7): 7506–7512CrossRefPubMedGoogle Scholar
  57. 57.
    Liang G, Neophytou N, Nikonov D E, Lundstrom M S. Performance projections for ballistic graphene nanoribbon fieldeffect transistors. IEEE Transactions on Electron Devices, 2007, 54(4): 677–682CrossRefGoogle Scholar
  58. 58.
    Chen J H, Jang C, Adam S, Fuhrer MS,Williams E D, Ishigami M. Charged-impurity scattering in graphene. Nature Physics, 2008, 4(5): 377–381CrossRefGoogle Scholar
  59. 59.
    Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles M D, Nikonov D E. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Applied Physics Letters, 2006, 88(14): 142102CrossRefGoogle Scholar
  60. 60.
    Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H. Roomtemperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters, 2008, 100(20): 206803CrossRefPubMedGoogle Scholar
  61. 61.
    Liao L, Bai J, Lin Y C, Qu Y, Huang Y, Duan X. Highperformance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Advanced Materials, 2010, 22(17): 1941–1945CrossRefPubMedGoogle Scholar
  62. 62.
    Tapasztó L, Dobrik G, Lambin P, Biró L P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotechnology, 2008, 3(7): 397–401CrossRefPubMedGoogle Scholar
  63. 63.
    Özyilmaz B, Jarillo-Herrero P, Efetov D, Kim P. Electronic transport in locally gated graphene nanoconstrictions. Applied Physics Letters, 2007, 91(19): 192107CrossRefGoogle Scholar
  64. 64.
    Yazdanpanah A, Pourfath M, Fathipour M, Kosina H, Selberherr S. A numerical study of line-edge roughness scattering in graphene nanoribbons. IEEE Transactions on Electron Devices, 2012, 59(2): 433–440CrossRefGoogle Scholar
  65. 65.
    Gunlycke D, Areshkin D A, White C T. Semiconducting graphene nanostrips with edge disorder. Applied Physics Letters, 2007, 90(14): 142104CrossRefGoogle Scholar
  66. 66.
    Evaldsson M, Zozoulenko I V, Xu H, Heinzel T. Edge-disorderinduced Anderson localization and conduction gap in graphene nanoribbons. Physical Review. B, 2008, 78(16): 161407CrossRefGoogle Scholar
  67. 67.
    Querlioz D, Apertet Y, Valentin A, Huet K, Bournel A, Galdin-Retailleau S, Dollfus P. Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder. Applied Physics Letters, 2008, 92(4): 042108CrossRefGoogle Scholar
  68. 68.
    Gutiérrez C, Brown L, Kim C J, Park J, Pasupathy A N. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nature Physics, 2016, 12(11): 1069CrossRefGoogle Scholar
  69. 69.
    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K. Chaotic Dirac billiard in graphene quantum dots. Science, 2008, 320(5874): 356–358CrossRefPubMedGoogle Scholar
  70. 70.
    Stampfer C, Güttinger J, Molitor F, Graf D, Ihn T, Ensslin K. Tunable Coulomb blockade in nanostructured graphene. Applied Physics Letters, 2008, 92(1): 012102CrossRefGoogle Scholar
  71. 71.
    Bischoff D, Varlet A, Simonet P, Eich M, Overweg H C, Ihn T, Ensslin K. Localized charge carriers in graphene nanodevices. Applied Physics Reviews, 2015, 2(3): 031301CrossRefGoogle Scholar
  72. 72.
    Novoselov K S, Geim A K, Morozov S V, Jiang D A, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669CrossRefPubMedGoogle Scholar
  73. 73.
    Novoselov K S, Neto A C. Two-dimensional crystals-based heterostructures: Materials with tailored properties. Physica Scripta, 2012, T146: 014006CrossRefGoogle Scholar
  74. 74.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review. B, 1996, 54(24): 17954CrossRefGoogle Scholar
  75. 75.
    Wakabayashi K. Electronic transport properties of nanographite ribbon junctions. Physical Review. B, 2001, 64(12): 125428CrossRefGoogle Scholar
  76. 76.
    Fujita M, Wakabayashi K, Nakada K, Kusakabe K. Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 1996, 65(7): 1920–1923CrossRefGoogle Scholar
  77. 77.
    Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319(5867): 1229–1232CrossRefPubMedGoogle Scholar
  78. 78.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777): 1191–1196CrossRefPubMedGoogle Scholar
  79. 79.
    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters, 2009, 9(5): 1752–1758CrossRefPubMedGoogle Scholar
  80. 80.
    Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Advanced Materials, 2009, 21(46): 4726–4730Google Scholar
  81. 81.
    Yu S S, Zheng W T, Wen Q B, Jiang Q. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon, 2008, 46(3): 537–543CrossRefGoogle Scholar
  82. 82.
    Li Y, Zhou Z, Shen P, Chen Z. Spin gapless semiconductor-metalhalf-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano, 2009, 3(7): 1952–1958CrossRefPubMedGoogle Scholar
  83. 83.
    Lherbier A, Blase X, Niquet Y M, Triozon F, Roche S. Charge transport in chemically doped 2D graphene. Physical Review Letters, 2008, 101(3): 036808CrossRefPubMedGoogle Scholar
  84. 84.
    Zheng X H, Rungger I, Zeng Z, Sanvito S. Effects induced by single and multiple dopants on the transport properties in zigzagedged graphene nanoribbons. Physical Review. B, 2009, 80(23): 235426CrossRefGoogle Scholar
  85. 85.
    Peköz R, Erkoç S. A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons. Physica E, Low-Dimensional Systems and Nanostructures, 2009, 42(2): 110–115CrossRefGoogle Scholar
  86. 86.
    Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y. Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry, 2010, 20(35): 7491–7496CrossRefGoogle Scholar
  87. 87.
    Ma X, Wang Q, Chen L Q, Cermignani W, Schobert H H, Pantano C G. Semi-empirical studies on electronic structures of a borondoped graphene layer—implications on the oxidation mechanism. Carbon, 1997, 35(10–11): 1517–1525CrossRefGoogle Scholar
  88. 88.
    Dutta S, Pati S K. Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchangecorrelation interactions. Journal of Physical Chemistry B, 2008, 112(5): 1333–1335CrossRefGoogle Scholar
  89. 89.
    Panchakarla L S, Govindaraj A, Rao C N R. Boron-and nitrogendoped carbon nanotubes and graphene. Inorganica Chimica Acta, 2010, 363(15): 4163–4174CrossRefGoogle Scholar
  90. 90.
    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, et al. Atomic layers of hybridized boron nitride and graphene domains. Nature Materials, 2010, 9(5): 430–435CrossRefPubMedGoogle Scholar
  91. 91.
    Drost R, Uppstu A, Schulz F, Hämäläinen S K, Ervasti M, Harju A, Liljeroth P. Electronic states at the graphene-hexagonal boron nitride zigzag interface. Nano Letters, 2014, 14(9): 5128–5132CrossRefPubMedGoogle Scholar
  92. 92.
    Nigar S, Zhou Z, Wang H, Imtiaz M. Modulating the electronic and magnetic properties of graphene. RSC Advances, 2017, 7(81): 51546–51580CrossRefGoogle Scholar
  93. 93.
    Rani P, Jindal V K. Designing band gap of graphene by B and N dopant atoms. RSC Advances, 2013, 3(3): 802–812CrossRefGoogle Scholar
  94. 94.
    Nath P, Chowdhury S, Sanyal D, Jana D. Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet. Carbon, 2014, 73: 275–282CrossRefGoogle Scholar
  95. 95.
    Kawasaki T, Ichimura T, Kishimoto H, Akbar A A, Ogawa T, Oshima C. Double atomic layers of graphene/monolayer h-BN on Ni (111) studied by scanning tunneling microscopy and scanning tunneling spectroscopy. Surface Review and Letters, 2002, 9(3–4): 1459–1464CrossRefGoogle Scholar
  96. 96.
    Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, Van Den Brink J. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Physical Review. B, 2007, 76(7): 073103CrossRefGoogle Scholar
  97. 97.
    Shemella P, Nayak S K. Electronic structure and band-gap modulation of graphene via substrate surface chemistry. Applied Physics Letters, 2009, 94(3): 032101CrossRefGoogle Scholar
  98. 98.
    Zhou S Y, Gweon G H, Fedorov A V, First P D, De Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A. Substrate-induced bandgap opening in epitaxial graphene. Nature Materials, 2007, 6(10): 770–775CrossRefPubMedGoogle Scholar
  99. 99.
    Liu A Y, Wentzcovitch R M, Cohen M L. Atomic arrangement and electronic structure of BC2N. Physical Review. B, 1989, 39(3): 1760CrossRefGoogle Scholar
  100. 100.
    Miyamoto Y, Rubio A, Cohen M L, Louie S G. Chiral tubules of hexagonal BC2N. Physical Review. B, 1994, 50(7): 4976CrossRefGoogle Scholar
  101. 101.
    Liang Y, Kawazoe Y. Half-metallicity modulation of hybrid BN-C nanotubes by external electric fields: A first-principles study. Journal of Chemical Physics, 2014, 140(23): 234702CrossRefPubMedGoogle Scholar
  102. 102.
    Huang Y, Bando Y, Tang C, Zhi C, Terao T, Dierre B, Sekiguchi T, Golberg D. Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature. Nanotechnology, 2009, 20(8): 085705CrossRefPubMedGoogle Scholar
  103. 103.
    Silva F W N, Cruz-Silva E, Terrones M, Terrones H, Barros E B. BNC nanoshells: A novel structure for atomic storage. Nanotechnology, 2017, 28(46): 465201CrossRefPubMedGoogle Scholar
  104. 104.
    Ding Y, Wang Y, Ni J. Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Applied Physics Letters, 2009, 95(12): 123105CrossRefGoogle Scholar
  105. 105.
    Kim W Y, Choi Y C, Kim K S. Understanding structures and electronic/spintronic properties of single molecules, nanowires, nanotubes, and nanoribbons towards the design of nanodevices. Journal of Materials Chemistry, 2008, 18(38): 4510–4521CrossRefGoogle Scholar
  106. 106.
    D’Innocenzo V, Srimath Kandada A R, De Bastiani M, Gandini M, Petrozza A. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. Journal of the American Chemical Society, 2014, 136(51): 17730–17733CrossRefPubMedGoogle Scholar
  107. 107.
    Seifert M, Vargas J E, Bobinger M, Sachsenhauser M, Cummings A W, Roche S, Garrido J A. Role of grain boundaries in tailoring electronic properties of polycrystalline graphene by chemical functionalization. 2D Materials, 2015, 2(2): 024008CrossRefGoogle Scholar
  108. 108.
    Chow P K, Jacobs-Gedrim R B, Gao J, Lu T M, Yu B, Terrones H, Koratkar N. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano, 2015, 9(2): 1520–1527CrossRefPubMedGoogle Scholar
  109. 109.
    Moon J, An J, Sim U, Cho S P, Kang J H, Chung C, Seo J H, Lee J, Nam K T, Hong B H. One-step synthesis of N-doped graphene quantum sheets from monolayer graphene by nitrogen plasma. Advanced Materials, 2014, 26(21): 3501–3505CrossRefPubMedGoogle Scholar
  110. 110.
    Kato T, Jiao L, Wang X, Wang H, Li X, Zhang L, Hatakeyama R, Dai H. Room-temperature edge functionalization and doping of graphene by mild plasma. Small, 2011, 7(5): 574–577CrossRefPubMedGoogle Scholar
  111. 111.
    Foley B M, Hernández S C, Duda J C, Robinson J T, Walton S G, Hopkins P E. Modifying surface energy of graphene via plasmabased chemical functionalization to tune thermal and electrical transport at metal interfaces. Nano Letters, 2015, 15(8): 4876–4882CrossRefPubMedGoogle Scholar
  112. 112.
    Singh R S. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study. AIP Advances, 2015, 5(11): 117150CrossRefGoogle Scholar
  113. 113.
    Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F, Wang X, et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 2014, 8(6): 5738–5745CrossRefPubMedGoogle Scholar
  114. 114.
    Shin Y J, Wang Y, Huang H, Kalon G, Wee A T S, Shen Z, Bhatia C S, Yang H. Surface-energy engineering of graphene. Langmuir, 2010, 26(6): 3798–3802CrossRefPubMedGoogle Scholar
  115. 115.
    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science, 2009, 323(5914): 610–613CrossRefPubMedGoogle Scholar
  116. 116.
    Tang Y B, Yin L C, Yang Y, Bo X H, Cao Y L, Wang H E, Zhang W J, Bello I, Lee S T, Cheng H M, et al. Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano, 2012, 6(3): 1970–1978CrossRefPubMedGoogle Scholar
  117. 117.
    Jhon Y I, Kim Y, Park J, Kim J H, Lee T, Seo M, Jhon Y M. Significant exciton brightening in monolayer tungsten disulfides via fluorination: n-Type gas sensing semiconductors. Advanced Functional Materials, 2016, 26(42): 7551–7559CrossRefGoogle Scholar
  118. 118.
    Zhang X, Hsu A, Wang H, Song Y, Kong J, Dresselhaus M S, Palacios T. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene. ACS Nano, 2013, 7(8): 7262–7270CrossRefPubMedGoogle Scholar
  119. 119.
    Kim Y, Jhon Y I, Park J, Kim C, Lee S, Jhon Y M. Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2. Scientific Reports, 2016, 6: 21405CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Sajjad M, Morell G, Feng P. Advance in novel boron nitride nanosheets to nanoelectronic device applications. ACS Applied Materials & Interfaces, 2013, 5(11): 5051–5056CrossRefGoogle Scholar
  121. 121.
    Nipane A, Karmakar D, Kaushik N, Karande S, Lodha S. Fewlayer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano, 2016, 10(2): 2128–2137CrossRefPubMedGoogle Scholar
  122. 122.
    Azcatl A, Qin X, Prakash A, Zhang C, Cheng L, Wang Q, Lu N, Kim M J, Kim J, Cho K, et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Letters, 2016, 16(9): 5437–5443CrossRefPubMedGoogle Scholar
  123. 123.
    Stampfer C, Schurtenberger E, Molitor F, Guttinger J, Ihn T, Ensslin K. Tunable graphene single electron transistor. Nano Letters, 2008, 8(8): 2378–2383CrossRefPubMedGoogle Scholar
  124. 124.
    Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catalysis, 2012, 2(5): 781–794CrossRefGoogle Scholar
  125. 125.
    Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Letters, 2011, 11(6): 2472–2477CrossRefPubMedGoogle Scholar
  126. 126.
    Zhang W, Lin C T, Liu K K, Tite T, Su C Y, Chang C H, Li L J. Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano, 2011, 5(9): 7517–7524CrossRefPubMedGoogle Scholar
  127. 127.
    Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, De Gendt S, Sels B F. Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 2010, 21(43): 435203CrossRefPubMedGoogle Scholar
  128. 128.
    Ionescu R, Espinosa E H, Sotter E, Llobet E, Vilanova X, Correig X, Felten A, Bittencourt C, Van Lier G, Charlier J, et al. Oxygen functionalisation of MWNT and their use as gas sensitive thickfilm layers. Sensors and Actuators. B, Chemical, 2006, 113(1): 36–46CrossRefGoogle Scholar
  129. 129.
    Chiang W H, Lin T C, Li Y S, Yang Y J, Pei Z. Toward bandgap tunable graphene oxide nanoribbons by plasma-assisted reduction and defect restoration at low temperature. RSC Advances, 2016, 6(3): 2270–2278CrossRefGoogle Scholar
  130. 130.
    Han Z J, Murdock A T, Seo D H, Bendavid A. Recent progress in plasma-assisted synthesis and modification of 2D materials. 2D Materials, 2018, 5(3): 032002CrossRefGoogle Scholar
  131. 131.
    Wojtaszek M, Tombros N, Caretta A, Van Loosdrecht P H M, Van Wees B J. A road to hydrogenating graphene by a reactive ion etching plasma. Journal of Applied Physics, 2011, 110(6): 063715CrossRefGoogle Scholar
  132. 132.
    Radisavljevic B, Radenovic A, Brivio J, Giacometti I V, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150CrossRefPubMedGoogle Scholar
  133. 133.
    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Letters, 2013, 13(6): 2615–2622CrossRefPubMedGoogle Scholar
  134. 134.
    Su J, Li N, Zhang Y, Feng L, Liu Z. Role of vacancies in tuning the electronic properties of Au-MoS2 contact. AIP Advances, 2015, 5(7): 077182CrossRefGoogle Scholar
  135. 135.
    Liu D, Guo Y, Fang L, Robertson J. Sulfur vacancies in monolayer MoS2 and its electrical contacts. Applied Physics Letters, 2013, 103(18): 183113CrossRefGoogle Scholar
  136. 136.
    Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nature Communications, 2013, 4: 2642CrossRefPubMedGoogle Scholar
  137. 137.
    Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, et al. Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6: 6293CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Islam M R, Kang N, Bhanu U, Paudel H P, Erementchouk M, Tetard L, Leuenberger M N, Khondaker S I. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale, 2014, 6(17): 10033–10039CrossRefPubMedGoogle Scholar
  139. 139.
    Zhang L, Zhou Y, Guo L, Zhao W, Barnes A, Zhang H T, Craig E, Zheng Y, Brahlek M, Haneef H F, et al. Correlated metals as transparent conductors. Nature Materials, 2016, 15(2): 204–210CrossRefPubMedGoogle Scholar
  140. 140.
    Castellanos-Gomez A, Wojtaszek M, Tombros N, van Wees B J. Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by scanning tunneling spectroscopy. Small, 2012, 8(10): 1607–1613CrossRefPubMedGoogle Scholar
  141. 141.
    Zheng X H, Wang X L, Abtew T A, Zeng Z. Building halfmetallicity in graphene nanoribbons by direct control over edge states occupation. Journal of Physical Chemistry C, 2010, 114(9): 4190–4193CrossRefGoogle Scholar
  142. 142.
    Endo M, Hayashi T, Hong S H, Enoki T, Dresselhaus M S. Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. Journal of Applied Physics, 2001, 90(11): 5670–5674CrossRefGoogle Scholar
  143. 143.
    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162CrossRefGoogle Scholar
  144. 144.
    Kane C L, Mele E J. Quantum spin Hall effect in graphene. Physical Review Letters, 2005, 95(22): 226801CrossRefPubMedGoogle Scholar
  145. 145.
    Young A F, Sanchez-Yamagishi J D, Hunt B, Choi S H, Watanabe K, Taniguchi T, Ashoori R C, Jarillo-Herrero P. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature, 2014, 505(7484): 528–532CrossRefPubMedGoogle Scholar
  146. 146.
    Saffarzadeh A, Farghadan R. A spin-filter device based on armchair graphene nanoribbons. Applied Physics Letters, 2011, 98(2): 023106CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Aswathy Vasudevan
    • 1
    • 2
  • Vasyl Shvalya
    • 1
  • Aleksander Zidanšek
    • 1
    • 2
    • 3
  • Uroš Cvelbar
    • 1
    • 2
    Email author
  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  3. 3.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia

Personalised recommendations