Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents

  • Weixing Deng
  • Pengfei Sun
  • Quli FanEmail author
  • Lei Zhang
  • Tsuyoshi MinamiEmail author
Research Article


The synthesis of N-cyclohexyl carbamate-attached fluorene-alt-phenylene copolymer (PFPNCC) and the use of PFPNCC as a “ligand-free” fluorescent chemosensor for Cu(II) are described. Addition of Cu(II) can efficiently quench the fluorescence of PFPNCC in nucleophilic solvents such as DMF and DMSO, but not in low nucleophilic solvents such as 1,4-dioxane and THF. Ultraviolet-visible spectra of the mixture of the conjugated polymer and Cu(II) indicate the presence of a reduced Cu (I) ion in the solution. Furthermore, fluorescence recovery of PFPNCC observed at low temperature suggests that the quenching and reducing mechanism is most probably due to a photo-induced electron transfer from excited PFPNCC to Cu(II). Our findings provide a novel strategy for highly selective conjugated polymer-based chemosensors for various target analytes, albeit “ligand-free”.


ligand-free fluorescent chemosensor copper photo-induced electron transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Basic Research Program of China (Grant No. 2015CB932200), the National Natural Science Foundation of China (Grant Nos. 21604042, 61378081, 21574064, and 21674048), Synergetic Innovation Center for Organic Electronics and Information Displays, Jiangsu National Synergetic Innovation Center for Advanced Materials, the Natural Science Foundation of Jiangsu Province of China (No. BK20150843), NUPTSF (Nos. NY215017, NY211003, and NY215080) and the Innovation Program for Postgraduates Research of Colleges and Universities of Jiangsu Province (No. CXZZ12-0459).

Supplementary material

11705_2019_1791_MOESM1_ESM.pdf (667 kb)
Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents


  1. 1.
    Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhag A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chemical Reviews, 2014, 114(8): 4366–4469CrossRefGoogle Scholar
  2. 2.
    Winkler J R, Gray H B. Electron flow through metalloproteins. Chemical Reviews, 2013, 114(7): 3369–3380CrossRefGoogle Scholar
  3. 3.
    Rae T, Schmidt P, Pufahl R, Culotta V, O’halloran T. Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science, 1999, 284 (5415): 805-808Google Scholar
  4. 4.
    Vora S R, Guo Y, Stephens D N, Salih E, Vu E D, Kirsch K H, Sonenshein G E, Trackman P C. Characterization of recombinant lysyl oxidase propeptide. Biochemistry, 2010, 49(13): 2962–2972CrossRefGoogle Scholar
  5. 5.
    Kieber-Emmons MT, Qayyum MF, Li Y, Halime Z, Hodgson K O, Hedman B, Karlin K D, Solomon E I. Spectroscopic elucidation of a new heme/copper dioxygen structure type: Implications for O···O bond rupture in cytochrome c oxidase. Angewandte Chemie International Edition, 2012, 51(1): 168–172CrossRefGoogle Scholar
  6. 6.
    Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters C L, Beyreuther K. The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science, 1996, 271(5254): 1406–1409CrossRefGoogle Scholar
  7. 7.
    Barnham K J, Bush A I. Metals in Alzheimer’s and Parkinson’s diseases. Current Opinion in Chemical Biology, 2008, 12(2): 222–228CrossRefGoogle Scholar
  8. 8.
    Lee S, Barin G, Ackerman C M, Muchenditsi A, Xu J, Reimer J A, Lutsenko S, Long J R, Chang C J. Copper capture in a thioether-functionalized porous polymer applied to the detection of Wilson’s disease. Journal of the American Chemical Society, 2016, 138(24): 7603–7609CrossRefGoogle Scholar
  9. 9.
    Tanzi R E, Petrukhin K, Chernov I, Pellequer J L,Wasco W, Ross B, Romano D M, Parano E, Pavone L, Brzustowicz L M, et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nature Genetics, 1993, 5(4): 344–350CrossRefGoogle Scholar
  10. 10.
    Shao N, Zhang Y, Cheung S, Yang R, Chan W, Mo T, Li K, Liu F. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Analytical Chemistry, 2005, 77 (22): 7294–7303CrossRefGoogle Scholar
  11. 11.
    Shen Q, Zhao X, Zhou S, Hou W, Zhu J J. ZnO/CdS hierarchical nanospheres for photoelectrochemical sensing of Cu2+. Journal of Physical Chemistry C, 2011, 115(36): 17958–17964CrossRefGoogle Scholar
  12. 12.
    Nuevo Ordóñez Y, Montes-Bayón M, Blanco-González E, Sanz-Medel A. Quantitative analysis and simultaneous activity measurements of Cu, Zn-superoxide dismutase in red blood cells by HPLCICPMS. Analytical Chemistry, 2010, 82(6): 2387–2394CrossRefGoogle Scholar
  13. 13.
    Yang L, Lian C, Li X, Han Y, Yang L, Cai T, Shao C. Highly selective bifunctional luminescent sensor toward nitrobenzene and Cu2+ ion based on microporous metal-organic frameworks: Synthesis, structures, and properties. ACS Applied Materials & Interfaces, 2017, 9(20): 17208–17217CrossRefGoogle Scholar
  14. 14.
    Han Y, Ding C, Zhou J, Tian Y. Single probe for imaging and biosensing of pH, Cu2+ ions, and pH/Cu2+ in live cells with ratiometric fluorescence signals. Analytical Chemistry, 2015, 87 (10): 5333–5339CrossRefGoogle Scholar
  15. 15.
    Yun S H, Xia L, Edison T N, Pandurangan M, Kim D H, Kim S H, Lee Y R. Highly selective fluorescence turn-on sensor for Cu2+ ions and its application in confocal imaging of living cells. Sensors and Actuators. B, Chemical, 2017, 240: 988–995CrossRefGoogle Scholar
  16. 16.
    Hsieh Y C, Chir J L, Wu H H, Guo C Q, Wu A T. Synthesis of a sugar-aza-crown ether-based cavitand as a selective fluorescent chemosensor for Cu2+ ion. Tetrahedron Letters, 2010, 51(1): 109–111CrossRefGoogle Scholar
  17. 17.
    Kim H N, Guo Z, Zhu W, Yoon J, Tian H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chemical Society Reviews, 2011, 40(1): 79–93CrossRefGoogle Scholar
  18. 18.
    McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors. Chemical Reviews, 2000, 100(7): 2537–2574CrossRefGoogle Scholar
  19. 19.
    Álvarez-Diaz A, Salinas-Castillo A, Camprubí-Robles M, Costa-Fernández J M, Pereiro R, Mallavia R, Sanz-Medel A. Conjugated polymer microspheres for “turn-off”/“turn-on” fluorescence optosensing of inorganic ions in aqueous media. Analytical Chemistry, 2011, 83(7): 2712–2718CrossRefGoogle Scholar
  20. 20.
    Dong Y, Koken B, Ma X, Wang L, Cheng Y, Zhu C. Polymer-based fluorescent sensor incorporating 2,2′-bipyridyl and benzo[2,1,3] thiadiazole moieties for Cu2+ detection. Inorganic Chemistry Communications, 2011, 14(11): 1719–1722CrossRefGoogle Scholar
  21. 21.
    Xing C, Shi Z, Yu M, Wang S. Cationic conjugated polyelectrolyte-based fluorometric detection of copper (II) ions in aqueous solution. Polymer, 2008, 49(11): 2698–2703CrossRefGoogle Scholar
  22. 22.
    Jeong Y, Yoon J. Recent progress on fluorescent chemosensors for metal ions. Inorganica Chimica Acta, 2012, 381: 2–14CrossRefGoogle Scholar
  23. 23.
    Kaur B, Kaur N, Kumar S. Colorimetric metal ion sensors—a comprehensive review of the years 2011–2016. Coordination Chemistry Reviews, 2018, 358: 13–69CrossRefGoogle Scholar
  24. 24.
    Duraisamy U, Naha S, Sivan V. Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013–15. Analytical Methods, 2017, 9: 552–578CrossRefGoogle Scholar
  25. 25.
    Pu K, Fang Z, Liu B. Effect of charge density on energy-transfer properties of cationic conjugated polymers. Advanced Functional Materials, 2008, 18(8): 1321–1328CrossRefGoogle Scholar
  26. 26.
    Sun P, Lin M, Zhao Y, Chen G, Jiang M. Stereoisomerism effect on sugar-lectin binding of self-assembled glyco-nanoparticles of linear and brush copolymers. Colloids and Surfaces. B, Biointerfaces, 2015, 133: 12–18CrossRefGoogle Scholar
  27. 27.
    Franc G, Jutand A. On the origin of copper (I) catalysts from copper (II) precursors in C-N and C-O cross-couplings. Dalton Transactions (Cambridge, England), 2010, 39(34): 7873–7875CrossRefGoogle Scholar
  28. 28.
    Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 2000, 205(1): 3–40CrossRefGoogle Scholar
  29. 29.
    De Santis G, Fabbrizzi L, Licchelli M, Mangano C, Sacchi D, Sardone N. A fluorescent chemosensor for the copper (II) ion. Inorganica Chimica Acta, 1997, 257(1): 69–76CrossRefGoogle Scholar
  30. 30.
    Rehm D, Weller A. Kinetics of fluorescence quenching by electron and H-atom transfer. Israel Journal of Chemistry, 1970, 8(2): 259–271CrossRefGoogle Scholar
  31. 31.
    Yang G, Wang W, Wang M, Liu T. Side-chain effect on the structural evolution and properties of poly(9,9-dihexylfluorene-alt-2,5-dialkoxybenzene) copolymers. Journal of Physical Chemistry B, 2007, 111(27): 7747–7755CrossRefGoogle Scholar
  32. 32.
    Richardson K A. The manufacture of high temperature superconducting tapes and films. Universal-Publishers, 1999, 4: 26–27Google Scholar
  33. 33.
    Verma M, Chaudhry A F, Fahrni C J. Predicting the photo-induced electron transfer thermodynamics in polyfluorinated 1,3,5-triarylpyrazolines based on multiple linear free energy relationships. Organic & Biomolecular Chemistry, 2009, 7(8): 1536–1546CrossRefGoogle Scholar
  34. 34.
    Liu Y, Minami T, Nishiyabu R, Wang Z, Anzenbacher P. Sensing of carboxylate drugs in urine by a supramolecular sensor array. Journal of the American Chemical Society, 2013, 135(20): 7705–7712CrossRefGoogle Scholar
  35. 35.
    Minami T, Liu Y, Akdeniz A, Koutnik P, Esipenko N A, Nishiyabu R, Kubo Y, Anzenbacher P. Intramolecular indicator displacement assay for anions: supramolecular sensor for glyphosate. Journal of the American Chemical Society, 2014, 136(32): 11396–11401CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts & TelecommunicationsNanjingChina
  2. 2.Institute of Industrial ScienceThe University of TokyoMeguro-ku, TokyoJapan

Personalised recommendations