Advertisement

Frontiers of Chemical Science and Engineering

, Volume 12, Issue 4, pp 683–696 | Cite as

A new approach for fuel injection into a solar receiver/ reactor: Numerical and experimental investigation

  • M Helal Uddin
  • Nesrin OzalpEmail author
  • Jens Heylen
  • Cedric Ophoff
Research Article
  • 3 Downloads

Abstract

An innovative and efficient design of solar receivers/reactors can enhance the production of clean fuels via concentrated solar energy. This study presents a new jet-type burner nozzle for gaseous feedstock injection into a cavity solar receiver inspired from the combustion technology. The nozzle design was adapted from a combustion burner and successfully implemented into a solar receiver and studied the influence of the nozzle design on the fluid mixing and temperature distribution inside the solar receiver using a 7 kW solar simulator and nitrogen as working fluid. Finally, a thorough computational fluid dynamics (CFD) analysis was performed and validated against the experimental results. The CFD results showed a variation of the gas flow pattern and gas mixing after the burner nozzle adaptation, which resulted an intense effect on the heat transfer inside the solar receiver.

Keywords

solar reactor nozzle CFD heat transfer mixing and recirculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Experimental portion of this research was funded by the Impulse Fund project # IMP/14/049 of KU Leuven. The authors also acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing resources that contributed to the research results reported within this paper.

References

  1. 1.
    Yadav D, Banerjee R. A review of solar thermochemical processes. Renewable & Sustainable Energy Reviews, 2016, 54: 497–532CrossRefGoogle Scholar
  2. 2.
    Alonso E, Romero M. Review of experimental investigation on directly irradiated particles solar reactors. Renewable & Sustainable Energy Reviews, 2015, 41: 53–67CrossRefGoogle Scholar
  3. 3.
    Villafán-Vidales H, Arancibia-Bulnes C, Riveros-Rosas D, Romero-Paredes H, Estrada C. An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities. Renewable & Sustainable Energy Reviews, 2017, 75: 894–908CrossRefGoogle Scholar
  4. 4.
    Kogan M, Kogan A. Production of hydrogen and carbon by solar thermal methane splitting. I. The unseeded reactor. International Journal of Hydrogen Energy, 2003, 28(11): 1187–1198CrossRefGoogle Scholar
  5. 5.
    Ozalp N, Kanjirakat A. Lagrangian characterization of multi-phase turbulent flow in a solar reactor for particle deposition prediction. International Journal of Hydrogen Energy, 2010, 35(10): 4496–4507CrossRefGoogle Scholar
  6. 6.
    Hirsch D, Steinfeld A. Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor. International Journal of Hydrogen Energy, 2004, 29(1): 47–55CrossRefGoogle Scholar
  7. 7.
    Ozalp N, JayaKrishna D. CFD analysis on the influence of helical carving in a vortex flow solar reactor. International Journal of Hydrogen Energy, 2010, 35(12): 6248–6260CrossRefGoogle Scholar
  8. 8.
    Abanades S, Kimura H, Otsuka H. Hydrogen production from thermo-catalytic decomposition of methane using carbon black catalysts in an indirectly-irradiated tubular packed-bed solar reactor. International Journal of Hydrogen Energy, 2014, 39(33): 18770–18783CrossRefGoogle Scholar
  9. 9.
    Kodama T, Gokon N, Cho H S, Matsubara K, Etori T, Takeuchi A, Yokota S, Ito S. Particles fluidized bed receiver/reactor with a beamdown solar concentrating optics: 30-kWth performance test using a big sun-simulator. In: Proceedings of AIP SolarPACES 2015. Cape Town: AIP Publishing, 2016, 120004Google Scholar
  10. 10.
    Kodama T, Enomoto S I, Hatamachi T, Gokon N. Application of an internally circulating fluidized bed for windowed solar chemical reactor with direct irradiation of reacting particles. Journal of Solar Energy Engineering, 2008, 130(1): 014504CrossRefGoogle Scholar
  11. 11.
    Roeb M, Sattler C, Klüser R, Monnerie N, de Oliveira L, Konstandopoulos A G, Agrafiotis C, Zaspalis V, Nalbandian L, Steele A, Stobbe P. Solar hydrogen production by a two-step cycle based on mixed iron oxides. Journal of Solar Energy Engineering, 2006, 128(2): 125–133CrossRefGoogle Scholar
  12. 12.
    Muhich C L, Ehrhart B D, Al-Shankiti I, Ward B J, Musgrave C B, Weimer A W. A review and perspective of efficient hydrogen generation via solar thermal water splitting. Wiley Interdisciplinary Reviews. Energy and Environment, 2016, 5(3): 261–287CrossRefGoogle Scholar
  13. 13.
    Bertocchi R, Karni J, Kribus A. Experimental evaluation of a nonisothermal high temperature solar particle receiver. Energy, 2004, 29 (5): 687–700CrossRefGoogle Scholar
  14. 14.
    Kodama T, Bellan S, Gokon N, Cho H S. Particle reactors for solar thermochemical processes. Solar Energy, 2017, 156: 113–132CrossRefGoogle Scholar
  15. 15.
    Levêque G, Bader R, Lipiński W, Haussener S. High-flux optical systems for solar thermochemistry. Solar Energy, 2017, 156: 133–148CrossRefGoogle Scholar
  16. 16.
    Ophoff C, Abedini-Najafabadi H, Bogaerts J, Ozalp N, Moens D. An Overview of variable aperture mechanism in attempt to control temperature inside solar cavity receivers. In: Proceedings of ASTFE TFEC-2018. Fort Lauderdale: ASTFE, 2018, 747–758Google Scholar
  17. 17.
    Costandy J, Ghazal N, Mohamed M T, Menon A, Shilapuram V, Ozalp N. Effect of reactor geometry on the temperature distribution of hydrogen producing solar reactors. International Journal of Hydrogen Energy, 2012, 37(21): 16581–16590CrossRefGoogle Scholar
  18. 18.
    Klein H H, Rubin R, Karni J. Experimental evaluation of particle consumption in a particle seeded solar receiver. Journal of Solar Energy Engineering, 2008, 130(1): 011012CrossRefGoogle Scholar
  19. 19.
    Rodat S, Abanades S, Flamant G. Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype. Solar Energy, 2011, 85(4): 645–652CrossRefGoogle Scholar
  20. 20.
    Koepf E, Villasmil W, Meier A. Pilot-scale solar reactor operation and characterization for fuel production via the Zn/ZnO thermochemical cycle. Applied Energy, 2016, 165: 1004–1023CrossRefGoogle Scholar
  21. 21.
    Mullinger P, Jenkins B. Industrial and process furnaces: Principles, design and operation. Oxford: Butterworth-Heinemann, 2008, 47–57Google Scholar
  22. 22.
    Spalding D B. Combustion and Mass Transfer. Oxford: Pergamon Press, 1979, 199–217Google Scholar
  23. 23.
    Abedini-Najafabadi H, Ozalp N. Development of a control model to regulate temperature in a solar receiver. Renewable Energy, 2017, 111: 95–104CrossRefGoogle Scholar
  24. 24.
    Vanierschot M. Fluid mechanics and control of annular jets with and without swirl. Dissertation for the Doctoral Degree. Leuven: Katholieke Universiteit Leuven, 2007, 15–20Google Scholar
  25. 25.
    Heylen J. Design, manufacturing and experimental testing of a novel solar reactor. Dissertation for the Masters Degree. Leuven: Katholieke Universiteit Leuven, 2026, 17–18Google Scholar
  26. 26.
    Chien M H, Ozalp N, Morrison G. Computational fluid dynamics and heat transfer analysis of vortex formation in a solar reactor. Journal of Thermal Science and Engineering Applications, 2015, 7 (4): 041007–041008CrossRefGoogle Scholar
  27. 27.
    Chase M W. NIST-JANAF Thermochemical Tables: Monograph 9. Maryland: NIST, 1998, 1062Google Scholar
  28. 28.
    Yang W C. Handbook of Fluidization and Fluid-particle Systems. New York: CRC press, 2003, 13–15CrossRefGoogle Scholar
  29. 29.
    Plawsky J L. Transport phenomena fundamentals. New York: CRC press, 2014, 919–938Google Scholar
  30. 30.
    Fries T, Omerović S, Schöllhammer D, Steidl J. Higher-order meshing of implicit geometries—part I: Integration and interpolation in cut elements. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 759–784CrossRefGoogle Scholar
  31. 31.
    Levêque G, Abanades S. Design and operation of a solar-driven thermogravimeter for high temperature kinetic analysis of solid-gas thermochemical reactions in controlled atmosphere. Solar Energy, 2014, 105: 225–235CrossRefGoogle Scholar
  32. 32.
    Karabay H, Wilson M, Owen J M. Predictions of effect of swirl on flow and heat transfer in a rotating cavity. International Journal of Heat and Fluid Flow, 2001, 22(2): 143–155CrossRefGoogle Scholar
  33. 33.
    Witze P O. Centerline velocity decay of compressible free jets. AIAA Journal, 1974, 12(4): 417–418CrossRefGoogle Scholar
  34. 34.
    Ball C, Fellouah H, Pollard A. The flow field in turbulent round free jets. Progress in Aerospace Sciences, 2012, 50: 1–26CrossRefGoogle Scholar
  35. 35.
    Dhotre M, Joshi J. Design of a gas distributor: Three-dimensional CFD simulation of a coupled system consisting of a gas chamber and a bubble column. Chemical Engineering Journal, 2007, 125(3): 149–163CrossRefGoogle Scholar
  36. 36.
    Chan C, Lam K. Centerline velocity decay of a circular jet in a counterflowing stream. Physics of Fluids, 1998, 10(3): 637–644CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M Helal Uddin
    • 1
  • Nesrin Ozalp
    • 1
    Email author
  • Jens Heylen
    • 2
  • Cedric Ophoff
    • 2
  1. 1.Mechanical and Industrial Engineering DepartmentUniversity of Minnesota DuluthDuluthUSA
  2. 2.Mechanical Engineering DepartmentLeuvenBelgium

Personalised recommendations