Nanocomposite materials in orthopedic applications

  • Mostafa R. Shirdar
  • Nasim Farajpour
  • Reza Shahbazian-Yassar
  • Tolou ShokuhfarEmail author
Review Article


This chapter is an introduction to nanocomposite materials and its classifications with emphasis on orthopedic application. It covers different types of matrix nanocomposites including ceramics, metal, polymer and natural-based nanocomposites with the main features and applications in the orthopedic. In addition, it presents structure, composition, and biomechanical features of bone as a natural nanocomposite. Finally, it deliberately presents developing methods for nanocomposites bone grafting.


nanocomposite materials orthopedic applications bone grafting nanocomposites nanocomposites classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



T. Shokuhfar acknowledges the financial support from NSF-DMR 1710049. M. R. Shirdar and N. Farajpour are thankful to NSFDMR 1564950.


  1. 1.
    Henrique P, Camargo C, Satyanarayana K G, Wypych F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research, 2009, 12(1): 1–39CrossRefGoogle Scholar
  2. 2.
    Mittal V. Bio–nanocomposites: Future high–value materials. In: Nanocomposites with Biodegradable Polymers: Synthesis, Properties, and Future perspectives. Oxford, 2011, 1–27Google Scholar
  3. 3.
    Schmidt D, Shah D, Giannelis E P. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6(3): 205–212CrossRefGoogle Scholar
  4. 4.
    Lau A K T, Bhattacharyya D, Ling C H Y. Nanocomposites for engineering applications. Journal of Nanomaterials, 2009, 2009: 1CrossRefGoogle Scholar
  5. 5.
    Tjong S C. Polymer Composites With Carbonaceous Nanofillers: Properties and Applications. Hoboken: Wiley, 2012, 1–388CrossRefGoogle Scholar
  6. 6.
    Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Composites Science and Technology, 2005, 65(15–16): 2385–2406CrossRefGoogle Scholar
  7. 7.
    Johnell O. The socioeconomic burden of fractures: Today and in the 21st century. American Journal of Medicine, 1997, 103(2): 20S–26SCrossRefPubMedGoogle Scholar
  8. 8.
    Jones L C, Topoleski L D T, Tsao A K. Biomaterials in orthopaedic implants. In: Mechanical Testing of Orthopaedic Implants. Amsterdam: Elsevier, 2017, 17–32CrossRefGoogle Scholar
  9. 9.
    Liu H, Webster T J. Bioinspired nanocomposites for orthopedic applications. Nanotechnology for the regeneration of hard and soft tissues. Singapore: World Scientific, 2007, 1–52CrossRefGoogle Scholar
  10. 10.
    Gu Y, Chen X, Lee J H, Monteiro D A, Wang H, Lee W Y. Inkjet printed antibiotic–and calcium–eluting bioresorbable nanocomposite micropatterns for orthopedic implants. Acta Biomaterialia, 2012, 8(1): 424–431CrossRefPubMedGoogle Scholar
  11. 11.
    Chan C K, Kumar T S S, Liao S, Murugan R, Ngiam M, Ramakrishnan S. Biomimetic nanocomposites for bone graft applications. Future Nanomedicine, 2006, 1(2): 177–188CrossRefPubMedGoogle Scholar
  12. 12.
    Okpala C C. Nanocomposites–an overview. International Journal of Engineering Research and Development, 2013, 8(11): 17–23Google Scholar
  13. 13.
    Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, Zhang X, Wei S, Guo Z. Polymer nanocomposites for energy storage, energy saving, and anticorrosion. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(29): 14929–14941CrossRefGoogle Scholar
  14. 14.
    Petronella F, Truppi A, Ingrosso C, Placido T, Striccoli M, Curri M L, Agostiano A, Comparelli R. Nanocomposite materials for photocatalytic degradation of pollutants. Catalysis Today, 2017, 281: 85–100CrossRefGoogle Scholar
  15. 15.
    Duan X, Deng J, Wang X, Liu P. Preparation of rGO/G/PANI ternary nanocomposites as high performance electrode materials for supercapacitors with spent battery powder as raw material. Materials & Design, 2017, 129: 135–142CrossRefGoogle Scholar
  16. 16.
    Tai WP, Kim Y S, Kim J G. Fabrication and magnetic properties of Al2O3/Co nanocomposites. Materials Chemistry and Physics, 2003, 82(2): 396–400CrossRefGoogle Scholar
  17. 17.
    Russo T, Gloria A, De Santis R, D’Amora U, Balato G, Vollaro A, Oliviero O, Improta G, Triassi M, Ambrosio L. Preliminary focus on the mechanical and antibacterial activity of a PMMA–based bone cement loaded with gold nanoparticles. Bioactive Materials, 2017, 2(3): 156–161CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Duc N D, Seung–Eock K, Quan T Q, Long D D, Anh V M. Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell. Composite Structures, 2018, 184: 1137–1144CrossRefGoogle Scholar
  19. 19.
    Khalid A, Abdel–Karim A, Ali Atieh M, Javed S, McKay G. PEGCNTs nanocomposite PSU membranes for wastewater treatment by membrane bioreactor. Separation and Purification Technology, 2018, 190: 165–176CrossRefGoogle Scholar
  20. 20.
    Schmidt D, Shah D, Giannelis E P. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6(3): 205–212CrossRefGoogle Scholar
  21. 21.
    Seo WJ, Sung Y T, Kim S B, Lee Y B, Choe K H, Choe S H, Sung J Y, Kim W N. Effects of ultrasound on the synthesis and properties of polyurethane foam/clay nanocomposites. Journal of Applied Polymer Science, 2006, 102(4): 3764–3773CrossRefGoogle Scholar
  22. 22.
    Vallet–Regí M, González–Calbet J M. Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, 2004, 32(1–2): 1–31CrossRefGoogle Scholar
  23. 23.
    Ramay H R R, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load–bearing bone tissue engineering. Biomaterials, 2004, 25(21): 5171–5180CrossRefPubMedGoogle Scholar
  24. 24.
    Swain S K, Gotman I, Unger R, Gutmanas E Y. Bioresorbable β–TCP–FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility. Materials Science and Engineering C, 2017, 78: 88–95CrossRefPubMedGoogle Scholar
  25. 25.
    Chernousova S, Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie International Edition, 2012, 52(6): 1636–1653CrossRefPubMedGoogle Scholar
  26. 26.
    Porwal H, Saggar R. Ceramic Matrix Nanocomposites. In: Comprehensive Composite Materials. Amsterdam: Elsevier, 2017, 138–161Google Scholar
  27. 27.
    Gupta P, Kumar D, Quraishi M A, Parkash O. Metal matrix nanocomposites and their application in corrosion control. Berlin: Springer, 2016, 231–246CrossRefGoogle Scholar
  28. 28.
    Kheimehsari H, Izman S, Shirdar M R. Effects of HA–coating on the surface morphology and corrosion behavior of a Co–Cr–based implant in different conditions. Journal of Materials Engineering and Performance, 2015, 24(6): 2294–2302CrossRefGoogle Scholar
  29. 29.
    Taheri M M, Kadir M R A, Shokuhfar T, Hamlekhan A, Assadian M, Shirdar M R, Mirjalili A. Surfactant–assisted hydrothermal synthesis of fluoridated hydroxyapatite nanorods. Ceramics International, 2015, 41(8): 9867–9872CrossRefGoogle Scholar
  30. 30.
    Balani K, Chen Y, Harimkar S P, Dahotre N B, Agarwal A. Tribological behavior of plasma–sprayed carbon nanotube–reinforced hydroxyapatite coating in physiological solution. Acta Biomaterialia, 2007, 3(6): 944–951CrossRefPubMedGoogle Scholar
  31. 31.
    Shirdar M R, Taheri M M. Surface morphology and corrosion behavior of hydroxyapatite–coated Co–Cr implant: Effect of sintering conditions. Journal of the Minerals Metals & Materials Society, 2017, 69(12): 2831–2837CrossRefGoogle Scholar
  32. 32.
    Taheri M M, Kadir M R A, Shokuhfar T, Hamlekhan A, Shirdar M R, Naghizadeh F. Fluoridated hydroxyapatite nanorods as novel fillers for improving mechanical properties of dental composite: Synthesis and application. Materials & Design, 2015, 82: 119–125CrossRefGoogle Scholar
  33. 33.
    Dorozhkin S. Bioceramics of calcium orthophosphates. Biomaterials, 2010, 31(7): 1465–1485CrossRefPubMedGoogle Scholar
  34. 34.
    Sivaperumal V R, Mani R, Nachiappan M S, Arumugam K. Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite. Materials Characterization, 2017, 134: 416–421CrossRefGoogle Scholar
  35. 35.
    Singh MK, Shokuhfar T, Gracio J J de A, de Sousa A C M, Fereira J M D F, Garmestani H, Ahzi S. Hydroxyapatite modified with carbon–nanotube–reinforced poly(methyl methacrylate): A nanocomposite material for biomedical applications. Advanced Functional Materials, 2008, 18(5): 694–700CrossRefGoogle Scholar
  36. 36.
    Farrokhi–Rad M. Electrophoretic deposition of fiber hydroxyapatite/titania nanocomposite coatings. Ceramics International, 2017, 44(1): 622–630CrossRefGoogle Scholar
  37. 37.
    Shirdar M R, Sudin I, Taheri M M, Keyvanfar A, Yusop M Z M. A novel hydroxyapatite composite reinforced with titanium nanotubes coated on Co–Cr–based alloy. Vacuum, 2015, 122: 82–89CrossRefGoogle Scholar
  38. 38.
    Henderson H B, Rios O, Bryan Z L, Heitman C P K, Ludtka G M, Mackiewicz–Ludtka G, Melin A M, Manuel M V. Magnetoacoustic mixing technology: A novel method of processing metalmatrix nanocomposites. Advanced Engineering Materials, 2014, 16(9): 1078–1082CrossRefGoogle Scholar
  39. 39.
    Li X, Xu J. Metal matrix nanocomposites. In: Comprehensive Composite Materials II. Amsterdam: Elsevier, 2018, 97–137CrossRefGoogle Scholar
  40. 40.
    Janas D, Liszka B. Copper matrix nanocomposites based on carbon nanotubes or graphene. Materials Chemistry Frontiers, 2018, 2(1): 22–35CrossRefGoogle Scholar
  41. 41.
    Hassanzadeh–Aghdam M K, Mahmoodi M J. A comprehensive analysis of mechanical characteristics of carbon nanotube–metal matrix nanocomposites. Materials Science and Engineering A, 2017, 701: 34–44CrossRefGoogle Scholar
  42. 42.
    Yahata C, Mochizuki A. Platelet compatibility of magnesium alloys. Materials Science and Engineering C, 2017, 78: 1119–1124CrossRefPubMedGoogle Scholar
  43. 43.
    Witte F, Eliezer A. Biodegradable metals. In: Degradation of Implant Materials. Berlin: Springer, 2012, 93–110Google Scholar
  44. 44.
    Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, 49(4): 1696–1701CrossRefGoogle Scholar
  45. 45.
    Khalajabadi S Z, Abu A B H, Ahmad N, Kadir M R A, Ismail A F, Nasiri R, Haider W, Redzuan N B H. Biodegradable Mg/HA/TiO2 nanocomposites coated with MgO and Si/MgO for orthopedic applications: A study on the corrosion, surface characterization, and biocompatability. Coatings, 2017, 7(7): 154CrossRefGoogle Scholar
  46. 46.
    Zhu C, Lv Y, Qian C, Qian H, Jiao T, Wang L, Zhang F. Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing. Scientific Reports, 2016, 6(1): 38875CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhu C, Lv Y, Qian C, Ding Z, Jiao T, Gu X, Lu E, Wang L, Zhang F. Microstructures, mechanical, and biological properties of a novel Ti–6V–4V/zinc surface nanocomposite prepared by friction stir processing. International Journal of Nanomedicine, 2018, 13: 1881–1898CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    De Journett T J, Spicer J B. Synthesis and patterning of polymer matrix nanocomposites using femtosecond laser–assisted processing. Materials Research Society, 2012, 1455, mrss12–1455–ii02–03Google Scholar
  49. 49.
    Zare Y, Shabani I. Polymer/metal nanocomposites for biomedical applications. Materials Science and Engineering C, 2016, 60: 195–203CrossRefPubMedGoogle Scholar
  50. 50.
    Dubey S P, Thakur V K, Krishnaswamy S, Abhyankar H A, Marchante V, Brighton J L. Progress in environmental–friendly polymer nanocomposite material from PLA: Synthesis, processing and applications. Vacuum, 2017, 146: 655–663CrossRefGoogle Scholar
  51. 51.
    Palmero P. Ceramic–polymer nanocomposites for bone–tissue regeneration. In: Nanocomposites for Musculoskeletal Tissue Regeneration. Amsterdam: Elsevier, 2016, 331–367CrossRefGoogle Scholar
  52. 52.
    Hule R A, Pochan D J. Polymer nanocomposites for biomedical applications. MRS Bulletin, 2007, 32(4): 354–358CrossRefGoogle Scholar
  53. 53.
    Mansur H S, Costa H S. Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chemical Engineering Journal, 2008, 137(1): 72–83CrossRefGoogle Scholar
  54. 54.
    Mohanapriya S, Mumjitha M, Purnasai K, Raj V. Fabrication and characterization of poly(vinyl alcohol)–TiO2 nanocomposite films for orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63: 141–156CrossRefPubMedGoogle Scholar
  55. 55.
    Kim H W, Lee H H, Knowles J C. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. Journal of Biomedical Materials Research. Part A, 2006, 79A(3): 643–649CrossRefGoogle Scholar
  56. 56.
    Liao S S, Cui F Z, Zhang W, Feng Q L. Hierarchically biomimetic bone scaffold materials: Nano–HA/collagen/PLA composite. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2004, 69B(2): 158–165Google Scholar
  57. 57.
    Chan K, Wong H, Yeung K, Tjong S. Polypropylene biocomposites with boron nitride and nanohydroxyapatite reinforcements. Materials (Basel), 2015, 8(3): 992–1008CrossRefGoogle Scholar
  58. 58.
    Wei G, Ma P X. Nanostructured biomaterials for regeneration. Advanced Functional Materials, 2008, 18(22): 3568–3582CrossRefGoogle Scholar
  59. 59.
    Webster T J, Ahn E S. Nanostructured biomaterials for tissue engineering bone. Advances in Biochemical Engineering/Biotechnology, 2007, 103: 275–308CrossRefPubMedGoogle Scholar
  60. 60.
    Pina S, Oliveira J M, Reis R L. Natural–based nanocomposites for bone tissue engineering and regenerative medicine: A review. Advanced Materials, 2015, 27(7): 1143–1169CrossRefPubMedGoogle Scholar
  61. 61.
    Kumar C S S R. Biomimetic and Bioinspired Nanomaterials. Hoboken: Wiley, 2010, 1–586Google Scholar
  62. 62.
    Canillas M, Pena P, de Aza A H, Rodríguez M A. Calcium phosphates for biomedical applications. Boletín de la Sociedad Española de Cerámica y Vidrio, 2017, 56(3): 91–112CrossRefGoogle Scholar
  63. 63.
    Park S, Lih E, Park K S, Joung Y K, Han D K. Bin, Lih E, Park K S, Joung Y K, Han D K. Biopolymer–based functional composites for medical applications. Progress in Polymer Science, 2017, 68: 77–105Google Scholar
  64. 64.
    Cunniffe G M, Dickson G R, Partap S, Stanton K T, O’Brien J F. Development and characterisation of a collagen nano–hydroxyapatite composite scaffold for bone tissue engineering. Journal of Materials Science. Materials in Medicine, 2010, 21(8): 2293–2298CrossRefPubMedGoogle Scholar
  65. 65.
    Yan L P, Silva–Correia J, Correia C, Caridade S G, Fernandes E M, Sousa R A, Mano J F, Oliveira J M, Oliveira A L, Reis R L. Bioactive macro/micro porous silk fibroin/nano–sized calcium phosphate scaffolds with potential for bone–tissue–engineering applications. Nanomedicine (London), 2013, 8(3): 359–378CrossRefGoogle Scholar
  66. 66.
    Barbani N, Guerra G D, Cristallini C, Urciuoli P, Avvisati R, Sala A, Rosellini E. Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction. Journal of Materials Science. Materials in Medicine, 2012, 23(1): 51–61CrossRefPubMedGoogle Scholar
  67. 67.
    Rogel M R, Qiu H, Ameer G A. The role of nanocomposites in bone regeneration. Journal of Materials Chemistry, 2008, 18(36): 4233CrossRefGoogle Scholar
  68. 68.
    Bhattacharyya S, Kumbar S G, Khan Y M, Nair L S, Singh A, Krogman N R, Brown P W, Allcock H R, Laurencin C T. Biodegradable polyphosphazene–nanohydroxyapatite composite nanofibers: Scaffolds for bone tissue engineering. Journal of Biomedical Nanotechnology, 2009, 5(1): 69–75CrossRefPubMedGoogle Scholar
  69. 69.
    Porter D. Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite. Materials Science and Engineering A, 2004, 365(1–2): 38–45CrossRefGoogle Scholar
  70. 70.
    Boyle WJ, Simonet WS, Lacey D L. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337–342CrossRefPubMedGoogle Scholar
  71. 71.
    Dorozhkin S V. Calcium Orthophosphate–based Bioceramics and Biocomposites. Hoboken: Wiley, 2016, 1–405CrossRefGoogle Scholar
  72. 72.
    Landis WJ. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone, 1995, 16(5): 533–544CrossRefPubMedGoogle Scholar
  73. 73.
    Rho J Y, Kuhn–Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 1998, 20(2): 92–102CrossRefGoogle Scholar
  74. 74.
    Kumar G, Narayan B. Morbidity at bone graft donor sites. In: Classic Papers in Orthopaedics. Berlin: Springer, 2014, 503–505CrossRefGoogle Scholar
  75. 75.
    García–Gareta E, Coathup M J, Blunn G W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015, 81: 112–121CrossRefPubMedGoogle Scholar
  76. 76.
    Liu Y, Liu S, Luo D, Xue Z, Yang X, Gu L, Zhou Y, Wang T. Hierarchically staggered nanostructure of mineralized collagen as a bone–grafting scaffold. Advanced Materials, 2016, 28(39): 8740–8748CrossRefPubMedGoogle Scholar
  77. 77.
    Becker J, Lu L, Runge M B, Zeng H, Yaszemski M J, Dadsetan M. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite. Journal of Biomedical Materials Research. Part A, 2015, 103(8): 2549–2557CrossRefPubMedGoogle Scholar
  78. 78.
    Hickey D J, Ercan B, Sun L, Webster T J. Adding MgO nanoparticles to hydroxyapatite–PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomaterialia, 2015, 14: 175–184CrossRefPubMedGoogle Scholar
  79. 79.
    Atak B H, Buyuk B, Huysal M, Isik S, Senel M, Metzger W, Cetin G. Preparation and characterization of amine functional nanohydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydrate Polymers, 2017, 164: 200–213CrossRefPubMedGoogle Scholar
  80. 80.
    Liao S, Ngiam M, Chan C K, Ramakrishna S. Fabrication of nano hydroxyapatite/collagen/osteonectin composites for bone graft applications. Biomedical Materials (Bristol, England), 2009, 4 (2): 25019CrossRefGoogle Scholar
  81. 81.
    Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Selforganization mechanism in a bone–like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22(13): 1705–1711CrossRefPubMedGoogle Scholar
  82. 82.
    Chan C K, Kumar T S, Liao S, Murugan R, Ngiam M, Ramakrishnan S. Biomimetic nanocomposites for bone graft applications. Nanomedicine (London), 2006, 1(2): 177–188CrossRefGoogle Scholar
  83. 83.
    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474–5491CrossRefPubMedGoogle Scholar
  84. 84.
    Salgado A J, Coutinho O P, Reis R L. Bone tissue engineering: State of the art and future trends. Macromolecular Bioscience, 2004, 4(8): 743–765CrossRefPubMedGoogle Scholar
  85. 85.
    Chan B P, Hui T Y, Wong M Y, Yip K H K, Chan G C F. Mesenchymal stem cell–encapsulated collagen microspheres for bone tissue engineering. Tissue Engineering. Part C, Methods, 2010, 16(2): 225–235CrossRefPubMedGoogle Scholar
  86. 86.
    Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W. Biomaterials as scaffold for bone tissue engineering. European Journal of Trauma, 2006, 32(2): 114–124CrossRefGoogle Scholar
  87. 87.
    Sachlos E, Czernuszka J T. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells & Materials, 2003, 5: 29–40Google Scholar
  88. 88.
    Hayashi T. Biodegradable polymers for biomedical uses. Progress in Polymer Science, 1994, 19(4): 663–702CrossRefGoogle Scholar
  89. 89.
    Winter G D. Heterotopic bone formation in a synthetic sponge. Proceedings of the Royal Society of Medicine, 1970, 63: 1111–1115PubMedPubMedCentralGoogle Scholar
  90. 90.
    Blokhuis T J, Termaat M F, den Boer F C, Patka P, Bakker F C, Haarman H J. Properties of calcium phosphate ceramics in relation to their in vivo behavior. Journal of Trauma, 2000, 48(1): 179–186CrossRefPubMedGoogle Scholar
  91. 91.
    Chan O, Coathup M J, Nesbitt A, Ho C Y, Hing K A, Buckland T, Campion C, Blunn G W. The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomaterialia, 2012, 8(7): 2788–2794CrossRefPubMedGoogle Scholar
  92. 92.
    Wang J, Chen Y, Zhu X, Yuan T, Tan Y, Fan Y, Zhang X. Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice. Journal of Biomedical Materials Research. Part A, 2014, 102(12): 4234–4243PubMedGoogle Scholar
  93. 93.
    Bi L, Jung S, Day D, Neidig K, Dusevich V, Eick D, Bonewald L. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical–sized rat calvarial defects implanted with bioactive glass scaffolds. Journal of Biomedical Materials Research. Part A, 2012, 100(12): 3267–3275CrossRefPubMedGoogle Scholar
  94. 94.
    Klopčič S B, Kovač J, Kosmač T. Apatite–forming ability of alumina and zirconia ceramics in a supersaturated Ca/P solution. Biomolecular Engineering, 2007, 24(5): 467–471CrossRefPubMedGoogle Scholar
  95. 95.
    Matassi F, Botti A, Sirleo L, Carulli C, Innocenti M. Porous metal for orthopedics implants. Clinical Cases in Mineral and Bone Metabolism, 2013, 10(2): 111–115PubMedPubMedCentralGoogle Scholar
  96. 96.
    Thomann M, Krause C, Angrisani N, Bormann D, Hassel T, Windhagen H, Meyer–Lindenberg A. Influence of a magnesiumfluoride coating of magnesium–based implants (MgCa0.8) on degradation in a rabbit model. Journal of Biomedical Materials Research. Part A, 2010, 93(4): 1609–1619PubMedGoogle Scholar
  97. 97.
    Kasuga T, Maeda H, Kato K, Nogami M, Hata K I, Ueda M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials, 2003, 24(19): 3247–3253CrossRefPubMedGoogle Scholar
  98. 98.
    Fricain J C, Schlaubitz S, Le Visage C, Arnault I, Derkaoui S M, Siadous R, Catros S, Lalande C, Bareille R, Renard M, et al. A nano–hydroxyapatite–pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials, 2013, 34(12): 2947–2959CrossRefPubMedGoogle Scholar
  99. 99.
    Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Selforganization mechanism in a bone–like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22(13): 1705–1711CrossRefPubMedGoogle Scholar
  100. 100.
    Tchounwou P B, Yedjou C G, Patlolla A K, Sutton D J. Heavy metal toxicity and the environment. In: Molecular, Clinical and Environmental Toxicology. Berlin: Springer, 2012, 101: 133–164CrossRefGoogle Scholar
  101. 101.
    Ajayan P M, Schadler L S, Braun P V. Nanocomposite Science and Technology. Hoboken: Wiley, 2004, 1–239Google Scholar
  102. 102.
    Shirdar M R, Taheri M M, Moradifard H, Keyvanfar A, Shafaghat A, Shokuhfar T, Izman S. Hydroxyapatite–titania nanotube composite as a coating layer on Co–Cr–based implants: Mechanical and electrochemical optimization. Ceramics International, 2016, 42(6): 6942–6954CrossRefGoogle Scholar
  103. 103.
    Shirdar MR, Taheri MM, Sudin I, Shafaghat A, Keyvanfar A, Abd Majid M Z. In situ synthesis of hydroxyapatite–grafted titanium nanotube composite. Journal of Experimental Nanoscience, 2016, 11(10): 816–822CrossRefGoogle Scholar
  104. 104.
    Yang S, Leong K F, Du Z, Chua C K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering, 2001, 7(6): 679–689PubMedGoogle Scholar
  105. 105.
    Lee K Y, Mooney D J. Hydrogels for tissue engineering. Chemical Reviews, 2001, 101(7): 1869–1879CrossRefPubMedGoogle Scholar
  106. 106.
    O’Brien F J. Biomaterials & scaffolds for tissue engineering. Materials Today, 2011, 14(3): 88–95CrossRefGoogle Scholar
  107. 107.
    Zhao C, Tan A, Pastorin G, Ho H K. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnology Advances, 2013, 31(5): 654–668CrossRefPubMedGoogle Scholar
  108. 108.
    Gentile P, Ferreira A M, Callaghan J T, Miller C A, Atkinson J, Freeman C, Hatton P V. Multilayer nanoscale encapsulation of biofunctional peptides to enhance bone tissue regeneration in vivo. Advanced Healthcare Materials, 2017, 6(8): 1601182CrossRefGoogle Scholar
  109. 109.
    Green D, Walsh D, Mann S, Oreffo R O. The potential of biomimesis in bone tissue engineering: Lessons from the design and synthesis of invertebrate skeletons. Bone, 2002, 30(6): 810–815CrossRefPubMedGoogle Scholar
  110. 110.
    Stupp S I. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science, 1997, 277(5330): 1242–1248CrossRefPubMedGoogle Scholar
  111. 111.
    Stupp S I. Supramolecular materials: Self–organized nanostructures. Science, 1997, 276(5311): 384–389CrossRefPubMedGoogle Scholar
  112. 112.
    Beniash E, Hartgerink J D, Storrie H, Stendahl J C, Stupp S I. Selfassembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomaterialia, 2005, 1(4): 387–397CrossRefPubMedGoogle Scholar
  113. 113.
    Hartgerink J D. Self–assembly and mineralization of peptideamphiphile nanofibers. Science, 2001, 294(5547): 1684–1688CrossRefPubMedGoogle Scholar
  114. 114.
    Kikuchi M, Ikoma T, Itoh S, Matsumoto H N, Koyama Y, Takakuda K, Shinomiya K, Tanaka J. Biomimetic synthesis of bone–like nanocomposites using the self–organization mechanism of hydroxyapatite and collagen. Composites Science and Technology, 2004, 64(6): 819–825CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mostafa R. Shirdar
    • 1
  • Nasim Farajpour
    • 2
  • Reza Shahbazian-Yassar
    • 3
  • Tolou Shokuhfar
    • 1
    • 4
    Email author
  1. 1.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Electrical EngineeringUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of Mechanical & Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Department of DentistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations