Advertisement

Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption

  • Shenggang Chen
  • Tao Liu
  • Ruiqi Yang
  • Dongqiang Lin
  • Shanjing Yao
Research Article
  • 3 Downloads

Abstract

The mixed-mode resins for protein adsorption have been prepared by a novel strategy, copolymer grafting. Specially, the copolymer-grafted resins CG-MA with two functional groups, 5-amino-benzimidazole (ABI) and methacryloxyethyltrimethyl ammonium chloride (METAC), have been prepared through surface-initiated activator generated by electron transfer for atom transfer radical polymerization of METAC and glycidyl methacrylate (GMA), followed by a ring-open reaction to introduce ABI. The charge and hydrophobicity of CG-MA resins could be controlled by manipulating the addition of METAC and GMA/ABI. Besides, METAC and ABI provided positive effects together in both protein adsorption and elution: dynamic binding capacity of human Immunoglobulin G (hIgG) onto CG-M-A resin with the highest ligand ratio of METAC to ABI is 46.8 mg∙g–1 at pH 9 and the elution recovery of hIgG is 97.0% at pH 5. The separation experiment showed that purity and recovery of monoclonal antibody from cell culture supernatant are 96.0% and 86.5%, respectively, indicating that copolymer-grafted mixed-mode resins could be used for antibody purification.

Keywords

atom transfer radical polymerization copolymer-grafting mixed-mode resin protein adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China. The authors have declared no conflict of interest.

Supplementary material

11705_2018_1745_MOESM1_ESM.pdf (702 kb)
Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption

References

  1. 1.
    Gao D, Wang L L, Lin D Q, Yao S J. Evaluating antibody monomer separation from associated aggregates using mixed-mode chromatography. Journal of Chromatography A, 2013, 1294: 70–75CrossRefGoogle Scholar
  2. 2.
    Zhao G, Dong X Y, Sun Y. Ligands for mixed-mode protein chromatography: Principles, characteristics and design. Journal of Biotechnology, 2009, 144(1): 3–11CrossRefGoogle Scholar
  3. 3.
    Kallberg K, Johansson H O, Bulow L. Multimodal chromatography: An efficient tool in downstream processing of proteins. Biotechnology Journal, 2012, 7(12): 1485–1495CrossRefGoogle Scholar
  4. 4.
    Zhu M, Carta G. Protein adsorption equilibrium and kinetics in multimodal cation exchange resins. Adsorption, 2016, 22(2): 165–179CrossRefGoogle Scholar
  5. 5.
    Wang X, Bo C, Wang C, Wei Y. Controllable preparation of a hydrophilic/ion-exchange mixed-mode stationary phase by surfaceinitiated atom transfer radical polymerization using a mixture of two functional monomers. Journal of Separation Science, 2017, 40(9): 1861–1868CrossRefGoogle Scholar
  6. 6.
    Gagnon P, Hensel F, Lee S, Zaidi S. Chromatographic behavior of IgM:DNA complexes. Journal of Chromatography A, 2011, 1218 (17): 2405–2412CrossRefGoogle Scholar
  7. 7.
    Chen J, Tetrault J, Ley A. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process. Journal of Chromatography A, 2008, 1177(2): 272–281CrossRefGoogle Scholar
  8. 8.
    Brenac Brochier V, Schapman A, Santambien P, Britsch L. Fast purification process optimization using mixed-mode chromatography sorbents in pre-packed mini-columns. Journal of Chromatography A, 2008, 1177(2): 226–233CrossRefGoogle Scholar
  9. 9.
    Menegatti S, Hussain M, Naik A D, Carbonell R G, Rao B M. mRNA display selection and solid-phase synthesis of Fc-binding cyclic peptide affinity ligands. Biotechnology and Bioengineering, 2013, 110(3): 857–870CrossRefGoogle Scholar
  10. 10.
    Tong H F, Lin D Q, Chu WN, Zhang Q L, Gao D, Wang R Z, Yao S J. Multimodal charge-induction chromatography for antibody purification. Journal of Chromatography A, 2016, 1429: 258–264CrossRefGoogle Scholar
  11. 11.
    Wang R Z, Lin D Q, Chu W N, Zhang Q L, Yao S J. New tetrapeptide ligands designed for antibody purification with biomimetic chromatography: Molecular simulation and experimental validation. Biochemical Engineering Journal, 2016, 114: 191–201CrossRefGoogle Scholar
  12. 12.
    Yu L, Liu N, Hong Y, Sun Y. Protein adsorption and chromatography on novel mixed-mode resins fabricated from butyl-modified poly(ethylenimine)-grafted Sepharose. Chemical Engineering Science, 2015, 135: 223–231CrossRefGoogle Scholar
  13. 13.
    Ruaan R C, Yang A, Hsu D. Bifunctional adsorbents for hydrophobic displacement chromatography of proteins. Biotechnology Progress, 2000, 16(6): 1132–1134CrossRefGoogle Scholar
  14. 14.
    Li Y, Sun Y. Poly(4-vinylpyridine): a polymeric ligand for mixedmode protein chromatography. Journal of Chromatography A, 2014, 1373: 97–105CrossRefGoogle Scholar
  15. 15.
    Liu T, Lin D Q, Lu H L, Yao S J. Preparation and evaluation of dextran-grafted agarose resin for hydrophobic charge-induction chromatography. Journal of Chromatography A, 2014, 1369: 116–124CrossRefGoogle Scholar
  16. 16.
    Liu T, Lin D Q, Wu Q C, Zhang Q L, Wang C X, Yao S J. A novel polymer-grafted hydrophobic charge-induction chromatographic resin for enhancing protein adsorption capacity. Chemical Engineering Journal, 2016, 304: 251–258CrossRefGoogle Scholar
  17. 17.
    Lu H L, Lin D Q, Zhu M M, Yao S J. Protein adsorption on DEAE ion-exchange resins with different ligand densities and pore sizes. Journal of Separation Science, 2012, 35(22): 3084–3090CrossRefGoogle Scholar
  18. 18.
    Yu L L, Tao S P, Dong X Y, Sun Y. Protein adsorption to poly (ethylenimine)-modified Sepharose FF: I. a critical ionic capacity for drastically enhanced capacity and uptake kinetics. Journal of Chromatography A, 2013, 1305: 76–84CrossRefGoogle Scholar
  19. 19.
    Wang C X, Lin D Q, Liu T, Yao S J. Hydrophobic charge-induction chromatographic resin with 5-aminobenzimidazol ligand: Effects of ligand density on protein adsorption. Separation Science and Technology, 2016, 51(10): 1700–1707CrossRefGoogle Scholar
  20. 20.
    Angelo J M, Cvetkovic A, Gantier R, Lenhoff A M. Characterization of cross-linked cellulosic ion-exchange adsorbents: 2. Protein sorption and transport. Journal of Chromatography A, 2016, 1438: 100–112CrossRefGoogle Scholar
  21. 21.
    Liu T, Angelo J M, Lin D Q, Lenhoff A M, Yao S J. Characterization of dextran-grafted hydrophobic charge-induction resins: Structural properties, protein adsorption and transport. Journal of Chromatography A, 2017, 1517: 44–53CrossRefGoogle Scholar
  22. 22.
    DePhillips P, Lenhoff A M. Pore size distributions of cationexchange adsorbents determined by inverse size-exclusion chromatography. Journal of Chromatography A, 2000, 883(1–2): 39–54CrossRefGoogle Scholar
  23. 23.
    Kremer M, Pothmann E, Roessler T, Baker J, Yee A, Blanch H, Prausnitz J M. Pore-size distributions of cationic polyacrylamide hydrogels varying in initial monomer concentration and crosslinker-monomer ratio. Macromolecules, 1994, 27(11): 2965–2973CrossRefGoogle Scholar
  24. 24.
    Bhambure R, Gillespie C M, Phillips M, Graalfs H, Lenhoff A M. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. I. Structural properties. Journal of Chromatography A, 2016, 1463: 90–101CrossRefGoogle Scholar
  25. 25.
    Stone M C, Carta G. Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography. Journal of Chromatography A, 2007, 1146(2): 202–215CrossRefGoogle Scholar
  26. 26.
    Yu L L, Sun Y. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: II. effect of ionic strength. Journal of Chromatography A, 2013, 1305: 85–93CrossRefGoogle Scholar
  27. 27.
    Thomas H, Coquebert de Neuville B, Storti G, Morbidelli M, Joehnck M, Schulte M. Role of tentacles and protein loading on pore accessibility and mass transfer in cation exchange materials for proteins. Journal of Chromatography A, 2013, 1285: 48–56CrossRefGoogle Scholar
  28. 28.
    Yuan X M, Lin D Q, Zhang Q L, Gao D, Yao S J. A microcalorimetric study of molecular interactions between immunoglobulin G and hydrophobic charge-induction ligand. Journal of Chromatography A, 2016, 1443: 145–151CrossRefGoogle Scholar
  29. 29.
    Tong H F, Lin D Q, Yuan X M, Yao S J. Enhancing IgG purification from serum albumin containing feedstock with hydrophobic chargeinduction chromatography. Journal of Chromatography A, 2012, 1244: 116–122CrossRefGoogle Scholar
  30. 30.
    Burton S C, Harding D R. Hydrophobic charge induction chromatography: Salt independent protein adsorption and facile elution with aqueous buffers. Journal of Chromatography A, 1998, 814(1–2): 71–81CrossRefGoogle Scholar
  31. 31.
    Mazzer A R, Perraud X, Halley J, O’Hara J, Bracewell D G. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold. Journal of Chromatography A, 2015, 1415: 83–90CrossRefGoogle Scholar
  32. 32.
    Gagnon P, Nian R, Leong D, Hoi A. Transient conformational modification of immunoglobulin G during purification by protein A affinity chromatography. Journal of Chromatography A, 2015, 1395: 136–142CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shenggang Chen
    • 1
  • Tao Liu
    • 1
  • Ruiqi Yang
    • 1
  • Dongqiang Lin
    • 1
  • Shanjing Yao
    • 1
  1. 1.Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations