Advertisement

Frontiers of Chemical Science and Engineering

, Volume 12, Issue 4, pp 780–789 | Cite as

Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking

  • Shuman Xu
  • Xiaoxiao Zhang
  • Dang-guo ChengEmail author
  • Fengqiu Chen
  • Xiaohong Ren
Research Article
  • 16 Downloads

Abstract

Hierarchical ZSM-5 zeolite aggregates with different sizes of nanocrystals were synthesized using different amounts of the mesoporogen 3-aminopropyltriethoxysilane. The effect of the crystal size on the catalytic cracking of n-heptane was investigated and the Thiele modulus and effectiveness factor were used to determine the reaction rate-limiting step. The crystal size affected the textual properties of the catalysts but not the acidic properties of the catalysts. The reaction rate was first order with respect to the n-heptane concentration. Cracking over hierarchical zeolites with nanocrystal sizes larger than about 50 nm took place under transition-limiting conditions, whereas the reaction over hierarchical zeolites with nanocrystal sizes of 15 or 30 nm proceeded under reaction control conditions. Hierarchical ZSM-5 zeolite aggregates with smaller nanocrystals had better selectivity for light olefins which can be ascribed to the shorter diffusion path lengths and lower diffusion resistance in these catalysts. Furthermore, these catalysts had lower coking levels which can be attributed to the substantial number of mesopores which prevent the formation of coke precursors.

Keywords

hierarchical ZSM-5 crystal size catalytic cracking Thiele modulus effectiveness factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The support from the National Key R & D Program of China (2016YFA0202900), the National Natural Science Foundation of China (91434123, 21622606), the Zhejiang Provincial Natural Science Foundation of China (LR18B060001) and the Fundamental Research Fund for Central Universities is greatly appreciated. Xiaohong Ren acknowledges financial support from the State Key Laboratory of Fine Chemicals (KF1516).

References

  1. 1.
    Sadrameli S M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review. Fuel, 2015, 140: 102–115CrossRefGoogle Scholar
  2. 2.
    Sadrameli S M. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: A state-of-the-art review II: Catalytic cracking review. Fuel, 2016, 173: 285–297CrossRefGoogle Scholar
  3. 3.
    Yoshimura Y, Kijima N, Hayakawa T, Murata K, Suzuki K, Mizukami F, Matano K, Konishi T, Oikawa T, Saito M, et al. Catalytic cracking of naphtha to light olefins. Catalysis Surveys from Japan, 2001, 4(2): 157–167CrossRefGoogle Scholar
  4. 4.
    Wang G, Xu C M, Gao J S. Study of cracking FCC naphtha in a secondary riser of the FCC unit for maximum propylene production. Fuel Processing Technology, 2008, 89(9): 864–873CrossRefGoogle Scholar
  5. 5.
    Plotkin J S. The changing dynamics of olefin supply/demand. Catalysis Today, 2008, 106(1): 10–14Google Scholar
  6. 6.
    Jung J S, Park J W, Seo G. Catalytic cracking of n-octane over alkali-treated MFI zeolites. Applied Catalysis A: General, 2005, 288 (1–2): 149–157Google Scholar
  7. 7.
    Alipour S M. Recent advances in naphtha catalytic cracking by nano ZSM-5: A review. Chinese Journal of Catalysis, 2016, 37(5): 671–680CrossRefGoogle Scholar
  8. 8.
    Liu D, Choi W C, Kang N Y, Lee Y J, Park H S, Shin C H, Park Y K. Inter-conversion of light olefins on ZSM-5 in catalytic naphtha cracking condition. Catalysis Today, 2014, 226: 52–66CrossRefGoogle Scholar
  9. 9.
    Rahimi N, Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Applied Catalysis A: General, 2011, 398(1–2): 1–17CrossRefGoogle Scholar
  10. 10.
    Borm R V, Reyniers M F, Martens J A, Marin G B. Catalytic cracking of methylcyclohexane on FAU, MFI, and bimodal porous materials: Influence of acid properties and pore topology. Industrial & Engineering Chemistry Research, 2010, 49(21): 10486–10495CrossRefGoogle Scholar
  11. 11.
    Bari Siddiqui M A, Aitani A M, Saeed M R, Al-Khattaf S. Enhancing the production of light olefins by catalytic cracking of FCC naphtha over mesoporous ZSM-5 catalyst. Topics in Catalysis, 2010, 53(19–20): 1387–1393CrossRefGoogle Scholar
  12. 12.
    Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Yoshimura Y, Murata K, Mizukami F. Dehydrogenative cracking of n-butane over modified HZSM-5 catalysts. Catalysis Letters, 2002, 81(1–2): 83–88CrossRefGoogle Scholar
  13. 13.
    Magnoux P, Cartraud P, Mignard S, Guisnet M. Coking, aging, and regeneration of zeolites: III. Comparison of the deactivation modes of H-mordenite, HZSM-5, and HY during n-heptane cracking. Journal of Catalysis, 1987, 106(1): 242–250Google Scholar
  14. 14.
    Kokotailo G T, Lawton S L, Olson D H, Meier W M. Structure of synthetic zeolite ZSM-5. Nature, 1978, 272(5652): 437–438CrossRefGoogle Scholar
  15. 15.
    Konno H, Ohnaka R, Nishimura J, Tago T, Nakasaka Y, Masuda T. Kinetics of the catalytic cracking of naphtha over ZSM-5 zeolite: Effect of reduced crystal size on the reaction of naphthenes. Catalysis Science & Technology, 2014, 4(12): 4265–4273CrossRefGoogle Scholar
  16. 16.
    Konno H, Tago T, Nakasaka Y, Ohnaka R, Nishimura J I, Masuda T. Effectiveness of nano-scale ZSM-5 zeolite and its deactivation mechanism on catalytic cracking of representative hydrocarbons of naphtha. Microporous and Mesoporous Materials, 2013, 175(13): 25–33CrossRefGoogle Scholar
  17. 17.
    Konno H, Okamura T, Kawahara T, Nakasaka Y, Tago T, Masuda T. Kinetics of n-hexane cracking over ZSM-5 zeolites-effect of crystal size on effectiveness factor and catalyst lifetime. Chemical Engineering Journal, 2012, 207–208(10): 490–496CrossRefGoogle Scholar
  18. 18.
    Tago T, Konno H, Nakasaka Y, Masuda T. Size-controlled synthesis of nano-zeolites and their application to light olefin synthesis. Catalysis Surveys from Asia, 2012, 16(3): 148–163CrossRefGoogle Scholar
  19. 19.
    Rownaghi A A, Rezaei F, Hedlund J. Selective formation of light olefin by n-hexane cracking over HZSM-5: Influence of crystal size and acid sites of nano- and micrometer-sized crystals. Chemical Engineering Journal, 2012, 191(19): 528–533CrossRefGoogle Scholar
  20. 20.
    Mochizuki H, Yokoi T, Imai H, Watanabe R, Namba S, Kondo J N, Tatsumi T. Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane. Microporous and Mesoporous Materials, 2011, 145(1–3): 165–171CrossRefGoogle Scholar
  21. 21.
    Tago T, Konno H, Sakamoto M, Nakasaka Y, Masuda T. Selective synthesis for light olefins from acetone over ZSM-5 zeolites with nano- and macro-crystal sizes. Applied Catalysis A: General, 2011, 403(1–2): 183–191CrossRefGoogle Scholar
  22. 22.
    Zhang X X, Cheng D G, Chen F Q, Zhan X L. n-Heptane catalytic cracking on hierarchical ZSM-5 zeolite: The effect of mesopores. Chemical Engineering Science, 2017, 168: 352–359CrossRefGoogle Scholar
  23. 23.
    Yang L, Liu Z, Liu Z, Peng W Y, Liu Y Q, Liu C G. Correlation between H-ZSM-5 crystal size and catalytic performance in the methanol-to-aromatics reaction. Chinese Journal of Catalysis, 2017, 38(4): 683–690CrossRefGoogle Scholar
  24. 24.
    Zhou J, Liu Z, Li L, Wang Y G, Gao H X, Yang W M, Tang Y. Hierarchical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization. Chinese Journal of Catalysis, 2013, 34(7): 1429–1433CrossRefGoogle Scholar
  25. 25.
    Jin H L, Ansari MB, Jeong E Y, Park S E. Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5. Journal of Catalysis, 2012, 291(7): 55–62Google Scholar
  26. 26.
    Gao X H, Tang Z C, Lu G X, Cao G Z, Li D, Tan Z G. Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication. Solid State Sciences, 2010, 12(7): 1278–1282CrossRefGoogle Scholar
  27. 27.
    Deng Q, Zhang X W, Wang L, Zou J J. Catalytic isomerization and oligomerization of endo-dicyclopentadiene using alkali-treated hierarchical porous HZSM-5. Chemical Engineering Science, 2015, 135(2): 540–546CrossRefGoogle Scholar
  28. 28.
    Groen J C, Jansen J C, Moulijn J A, Perez-Ramirez J. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. ChemInform, 2004, 35(45): 13062–13065CrossRefGoogle Scholar
  29. 29.
    Cho H S, Ryoo R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151(11): 107–112CrossRefGoogle Scholar
  30. 30.
    Wang L F, Zhang Z, Yin C Y, Shan Z C, Xiao F S. Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers. Microporous and Mesoporous Materials, 2010, 131(1–3): 58–67Google Scholar
  31. 31.
    Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723CrossRefGoogle Scholar
  32. 32.
    Xiao Q, Yao Q S, Zhuang J, Liu G, Zhong Y J, Zhu W D. A localized crystallization to hierarchical ZSM-5 microspheres aided by silane coupling agent. Journal of Colloid and Interface Science, 2013, 394(1): 604–610CrossRefGoogle Scholar
  33. 33.
    Serrano D P, Aguado J, Morales G, Rodríguez J M, Peral A, Thommes M, Epping J D, Chmelka B F. Molecular and meso-and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chemistry of Materials, 2009, 21(4): 641–654CrossRefGoogle Scholar
  34. 34.
    Serrano D P, Aguado J, Escola J M, Rodriguez J M, Peral A. Effect of the organic moiety nature on the synthesis of hierarchical ZSM-5 from silanized protozeolitic units. Journal of Materials Chemistry, 2008, 18(35): 4210–4218CrossRefGoogle Scholar
  35. 35.
    Treacy M M J, Higgins J B. Collection of Simulated XRD Powder Patterns for Zeolites. Amsterdam: Elsevier, 2001, 21: 388–389Google Scholar
  36. 36.
    Serrano D P, Aguado J, Escola J M, Rodriguez J M, Peral A. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds. Chemistry of Materials, 2006, 18(10): 2462–2464CrossRefGoogle Scholar
  37. 37.
    Koohsaryan E, Anbia M. Nanosized and hierarchical zeolites: A short review. Chinese Journal of Catalysis, 2016, 37(4): 447–467CrossRefGoogle Scholar
  38. 38.
    Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117CrossRefGoogle Scholar
  39. 39.
    Miar Alipour S, Halladj R, Askari S, BagheriSereshki E. Low cost rapid route for hydrothermal synthesis of nano ZSM-5 with mixture of two, three and four structure directing agents. Journal of Porous Materials, 2016, 23(1): 145–155CrossRefGoogle Scholar
  40. 40.
    Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J, Sing K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9–10): 1051–1069Google Scholar
  41. 41.
    Cychosz K A, Guillet-Nicolas R, García-Martínez J, Thommes M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chemical Society Reviews, 2017, 46(2): 389–414CrossRefGoogle Scholar
  42. 42.
    Christensen C H, Johannsen K, Törnqvist E, Schmidt I, Topsøe H, Christensen C H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today, 2007, 128(3–4): 117–122CrossRefGoogle Scholar
  43. 43.
    Masuda T. Diffusion mechanisms of zeolite catalysts. ChemInform, 2004, 35(6): 133–144CrossRefGoogle Scholar
  44. 44.
    Masuda T, Fujikata Y, Nishida T, Hashimoto K. The influence of acid sites on intracrystalline diffusivities within MFI-type zeolites. Microporous and Mesoporous Materials, 1998, 23(3): 157–167CrossRefGoogle Scholar
  45. 45.
    Meunier F C, Verboekend D, Gilson J P, Groen J C, Pérez-Ramírez J. Influence of crystal size and probe molecule on diffusion in hierarchical ZSM-5 zeolites prepared by desilication. Microporous and Mesoporous Materials, 2012, 148(1): 115–121CrossRefGoogle Scholar
  46. 46.
    Zhao H, Ma J H, Zhang Q Q, Liu Z P, Li R F. Adsorption and diffusion of n-heptane and toluene over mesoporous ZSM-5 zeolites. Industrial & Engineering Chemistry Research, 2014, 53 (35): 13810–13819CrossRefGoogle Scholar
  47. 47.
    Shetti V N, Kim J, Srivastava R, Choi M, Ryoo R. Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. Journal of Catalysis, 2008, 254 (2): 296–303CrossRefGoogle Scholar
  48. 48.
    Javaid R, Urata K, Furukawa S, Komatsu T. Factors affecting coke formation on H-ZSM-5 in naphtha cracking. Applied Catalysis A: General, 2015, 491: 100–105CrossRefGoogle Scholar
  49. 49.
    Kim J, Choi M, Ryoo R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-tohydrocarbon conversion process. Journal of Catalysis, 2010, 269 (1): 219–228CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shuman Xu
    • 1
  • Xiaoxiao Zhang
    • 1
  • Dang-guo Cheng
    • 1
    Email author
  • Fengqiu Chen
    • 1
  • Xiaohong Ren
    • 2
    • 3
  1. 1.Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
  2. 2.School of Chemistry and Chemical EngineeringTianjin University of TechnologyTianjinChina
  3. 3.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianChina

Personalised recommendations