Frontiers of Chemical Science and Engineering

, Volume 12, Issue 4, pp 772–779 | Cite as

Efficient production of d-1,2,4-butanetriol from d-xylose by engineered Escherichia coli whole-cell biocatalysts

  • Shewei Hu
  • Qian Gao
  • Xin Wang
  • Jianming Yang
  • Nana Xu
  • Kequan ChenEmail author
  • Sheng Xu
  • Pingkai Ouyang
Research Article


We have developed a whole-cell bioconversion system for the production of d-1,2,4-butanetriol (BT) from renewable biomass. A plasmid pETduet-xylB-yjhG-T7-adhP-T7-mdlC was constructed and transformed to Escherichia coli BL21(DE3) to obtain the whole cells of E. coli BL21-XYMA capable of bioconversion d-xylose to BT. Then, the factors including carbon sources, nitrogen sources, metal ions, and culture conditions (pH, temperature, IPTG) were identified, and their effects on the whole-cell activity for BT production were investigated. To obtain the highest whole-cell activity, the optimal cultivation parameters are: 15 g·L–1 yeast extract, 5 g·L–1 sucrose, 3 g·L–1 KH2PO4, 5 g·L–1 NaCl, 3 g·L–1 NH4Cl, 0.25 g·L–1 MgSO4·7H2O and 1 mL·L–1 the mixture of trace elements. With the optimized whole cells of E. coli BL21-XYMA, 60 g·L–1 of xylose was converted to 28 g·L–1 BT with a molar yield of 66 %, which is higher than those reported in the biotechnological system.


d-1,2,4-butanetriol whole-cell bioconversion carbon source nitrogen sources metal ions culture conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was financially supported by the Open Funding Project of the State Key Laboratory of Bioreactor Engineering, the National Natural Science Foundation of China (Grant Nos. 21576134, 21606127, 21390200) and the National Key Research and Development Program of China (Grant No. 2016YFA0204300).


  1. 1.
    Sànchez Nogué V, Karhumaa K. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnology Letters, 2015, 37(4): 761–772CrossRefGoogle Scholar
  2. 2.
    Yamada-Onodera K, Norimoto A, Kawada N, Furuya R, Yamamoto H, Tani Y. Production of optically active 1,2,4-butanetriol from corresponding racemate by Microbial stereoinversion. Journal of Bioscience and Bioengineering, 2007, 103(5): 494–496CrossRefGoogle Scholar
  3. 3.
    Niu W, Molefe M N, Frost J W. Microbial synthesis of the energetic material 1,2,4-butanetriol. Abstracts of Papers of the American Chemical Society, 2004, 227: U298–U298Google Scholar
  4. 4.
    Xu Y, Qian L, Pontsler A V, McIntyre T M, Prestwich G D. Synthesis of difluoromethyl substituted lysophosphatidic acid analogues. Tetrahedron, 2004, 60(1): 43–49CrossRefGoogle Scholar
  5. 5.
    Valdehuesa K N G, Liu H, Ramos K R M, Park S J, Nisola G M, Lee W K, Chung W J. Direct bioconversion of d-xylose to 1,2,4-butanetriol in an engineered Escherichia coli. Process Biochemistry, 2014, 49(1): 25–32CrossRefGoogle Scholar
  6. 6.
    Zhang N, Wang J, Zhang Y, Gao H. Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli. Enzyme and Microbial Technology, 2016, 93–94: 51–58Google Scholar
  7. 7.
    Cao Y, Niu W, Guo J, Xian M, Liu H. Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass. Scientific Reports, 2015, 5(1): 18149CrossRefGoogle Scholar
  8. 8.
    Ishige T, Honda K, Shimizu S. Whole organism biocatalysis. Current Opinion in Chemical Biology, 2005, 9(2): 174–180CrossRefGoogle Scholar
  9. 9.
    Bornscheuer U T, Huisman G W, Kazlauskas R J, Lutz S, Moore J C, Robins K. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397): 185–194CrossRefGoogle Scholar
  10. 10.
    Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Stürmer R, Zelinski T. Industrial methods for the production of optically active intermediates. Angewandte Chemie International Edition, 2004, 43 (7): 788–824CrossRefGoogle Scholar
  11. 11.
    Endo T, Koizumi S. Microbial conversion with cofactor regeneration using genetically engineered bacteria. Advanced Synthesis & Catalysis, 2001, 343(6–7): 521–526CrossRefGoogle Scholar
  12. 12.
    Ogawa J, Shimizu S. Industrial microbial enzymes: Their discovery by screening and use in large-scale production of useful chemicals in Japan. Current Opinion in Biotechnology, 2002, 13(4): 367–375CrossRefGoogle Scholar
  13. 13.
    Lee S Y. High cell-density culture of Escherichia coli. Trends in Biotechnology, 1996, 14(3): 98–105CrossRefGoogle Scholar
  14. 14.
    Chen N, Huang J, Feng Z B, Yu L, Xu Q Y, Wen T Y. Optimization of fermentation conditions for the biosynthesis of L-threonine by Escherichia coli. Applied Biochemistry and Biotechnology, 2009, 158(3): 595–604CrossRefGoogle Scholar
  15. 15.
    Amrane A, Prigent Y. Lactic acid production from lactose in batch culture: analysis of the data with the help of a mathematical model; relevance for nitrogen source and preculture assessment. Applied Microbiology and Biotechnology, 1994, 40(5): 644–649CrossRefGoogle Scholar
  16. 16.
    Son H J, Heo M S, Kim Y G, Lee S J. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnology and Applied Biochemistry, 2001, 33(1): 1–5CrossRefGoogle Scholar
  17. 17.
    Raza W, Yang X, Wu H, Huang Q, Xu Y, Shen Q. Evaluation of metal ions (Zn2+, Fe3+ and Mg2+) effect on the production of fusaricidin-type antifungal compounds by Paenibacillus polymyxa SQR-21. Bioresource Technology, 2010, 101(23): 9264–9271CrossRefGoogle Scholar
  18. 18.
    Jiang Y, Liu W, Cheng T, Cao Y, Zhang R, Xian M. Characterization of d-xylonate dehydratase YjhG from Escherichia coli. Bioengineered, 2015, 6(4): 227–232CrossRefGoogle Scholar
  19. 19.
    Jones P G, VanBogelen R A, Neidhardt F C. Induction of proteins in response to low temperature in Escherichia coli. Journal of Bacteriology, 1987, 169(5): 2092–2095CrossRefGoogle Scholar
  20. 20.
    Sun L, Yang F, Sun H, Zhu T, Li X, Li Y, Xu Z, Zhang Y. Synthetic pathway optimization for improved 1,2,4-butanetriol production. Journal of Industrial Microbiology & Biotechnology, 2016, 43(1): 67–78CrossRefGoogle Scholar
  21. 21.
    Wang X, Xu N, Hu S, Yang J, Gao Q, Xu S, Chen K, Ouyang P. d-1,2,4-butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli. Bioresource Technology, 2018, 250: 406–412CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shewei Hu
    • 1
  • Qian Gao
    • 1
  • Xin Wang
    • 1
  • Jianming Yang
    • 2
  • Nana Xu
    • 1
  • Kequan Chen
    • 1
    Email author
  • Sheng Xu
    • 1
  • Pingkai Ouyang
    • 1
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Xi’an Modern Chemistry Research InstituteXi’anChina

Personalised recommendations