Visual chiral recognition of 1,1′-binaphthol through enantioselective collapse of gel based on an amphiphilic Schiff-base gelator

  • Xuhong Zhang
  • Haimiao Li
  • Xin Zhang
  • Meng An
  • Weiwei Fang
  • Haitao YuEmail author
Research Article


A novel gelator that contained both Schiff base and L-lysine moieties was synthesized and its gelation behavior was tested. This gelator can form gels in various organic solvents. The resulting gel can be applied as a fascinating platform for visual recognition of enantiomeric 1-(2-hydroxynaphthalen-1-yl)naphthalen-2-ol (BINOL) through selective gel collapse. In addition, the mechanism for the reaction of the gel with chiral BINOL was investigated by scanning electron microscope and 1H nuclear magnetic resonance.


gelator Schiff base chiral recognition gel formation gel collapse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We greatly appreciate the support of the National Natural Science Foundation of China (Grant Nos. 21272054 and 21502040), Natural Science Foundation of Hebei Province (B2016205249 and B2016205211), Youth Top-notch Talent Foundation of the Education Department of Hebei Province (No. BJ2014039), Science and Technology Research Fund of the Education Department of Hebei Province (No. ZD2015030) and the Startup Foundation of Hebei Normal University (Nos. L2015B08, L2015B09, L2015k02 and L2016Z01)


  1. 1.
    Sun T, Han D, Rhemann K, Chi L, Fuchs H. Stereospecific interaction between immune cells and chiral surfaces. Journal of the American Chemical Society, 2007, 129(6): 1496–1497CrossRefGoogle Scholar
  2. 2.
    Tang K, Gan H, Li Y, Chi L, Sun T, Fuchs H. Stereoselective interaction between DNA and chiral surfaces. Journal of the American Chemical Society, 2008, 130(34): 11284–11285CrossRefGoogle Scholar
  3. 3.
    Miao W G, Zhang L, Wang X F, Qin L, Liu M H. Gelation-induced visible supramolecular chiral recognition by fluorescent metal complexes of quinolinol-glutamide. Langmuir, 2013, 29(18): 5435–5442CrossRefGoogle Scholar
  4. 4.
    Wang Y, Zhang T, Liu L. Enantioselective and a-regioselective allylic amination of Morita-Baylis-Hillman acetates with simple aromatic amines catalyzed by planarly chiral ligand/palladium catalyst. Chinese Journal of Chemistry, 2012, 30(11): 2641–2646Google Scholar
  5. 5.
    Velmurugan K, Tang L, Nandhakumar R. A Novel dimeric BINOL for enantioselective recognition of 1, 2-amino alcohols. Chinese Journal of Chemistry, 2014, 32(11): 1157–1160CrossRefGoogle Scholar
  6. 6.
    Chi L, Zhao J, James T D. Chiral mono boronic acid as fluorescent enantioselective sensor for mono a-hydroxyl carboxylic acids. Journal of Organic Chemistry, 2008, 73(12): 4684–4687CrossRefGoogle Scholar
  7. 7.
    Li Z B, Lin J, Sabat M, Hyacinth M, Pu L. Enantioselective fluorescent recognition of chiral acids by cyclohexane-1, 2-diaminebased bisbinaphthyl molecules. Journal of Organic Chemistry, 2007, 72(13): 4905–4916CrossRefGoogle Scholar
  8. 8.
    Jintoku H, Takafuji M, Oda R, Ihara H. Enantioselective recognition by a highly ordered porphyrin-assembly on a chiral molecular gel. Chemical Communications, 2012, 48(40): 4881–4883CrossRefGoogle Scholar
  9. 9.
    Jin Q X, Zhang L, Zhu X F, Duan P F, Liu M H. Amphiphilic schiff base organogels: Metal-ion-mediated chiral twists and chiral recognition. Chemistry-A European Journal, 2012, 18(16): 4916–4922CrossRefGoogle Scholar
  10. 10.
    Wei G, Zhang S, Dai C, Quan Y, Cheng Y, Zhu C. A new chiral binaphthalene-based fluorescence polymer sensor for the highly enantioselective recognition of phenylalaninol. Chemistry-A European Journal, 2013, 19(47): 16066–16071CrossRefGoogle Scholar
  11. 11.
    Miao W, Zhang L, Wang X, Cao H, Jin Q, Liu M. A dual functional metallogel of amphiphilic copper (II) quinolinol: Redox responsiveness and enantioselectivity. Chemistry-A European Journal, 2013, 19(9): 3029–3036CrossRefGoogle Scholar
  12. 12.
    Xu K, Kong H, Li P, Yang L, Zhang J, Wang C. Acridine-based enantioselective fluorescent sensors for the malate anion in water. New Journal of Chemistry, 2014, 38(3): 1004–1010CrossRefGoogle Scholar
  13. 13.
    Tu T, Fang W, Sun Z. Visual-size molecular recognition based on gels. Advanced Materials, 2013, 25(37): 5304–5313CrossRefGoogle Scholar
  14. 14.
    Song F, Fei N, Li F, Zhang S, Cheng Y, Zhu C. Zhu C. A chiral ionic polymer for direct visual enantioselective recognition of a-amino acid anions. Chemical Communications, 2013, 49(28): 2891–2893CrossRefGoogle Scholar
  15. 15.
    Yu X, Liu Q, Wu J, Zhang M, Cao X, Zhang S, Wang Q, Chen L, Yi T. Sonication-triggered instantaneous gel-to-gel transformation. Chemistry-A European Journal, 2010, 16(30): 9099–9106CrossRefGoogle Scholar
  16. 16.
    Fang W, Liu X, Lu Z, Tu T. Photoresponsive metallo-hydrogels based on visual discrimination of the positional isomers through selective thixotropic gel collapse. Chemical Communications, 2014, 50(25): 3313–3316CrossRefGoogle Scholar
  17. 17.
    Ladet S, David L, Domard A. Multi-membrane hydrogels. Nature, 2008, 452(7183): 76–79CrossRefGoogle Scholar
  18. 18.
    Kumar N S S, Varghese S, Narayan G, Das S. Hierarchical selfassembly of donor–acceptor-substituted butadiene amphiphiles into photoresponsive vesicles and gels. Angewandte Chemie International Edition, 2006, 45(38): 6317–6321CrossRefGoogle Scholar
  19. 19.
    Li Z, Huang Y, Fan D, Li H, Liu S, Wang L. Synthesis and properties of novel organogelators functionalized with 5-iodo-1, 2, 3-triazole and azobenzene groups. Frontiers of Chemical Science and Engineering, 2016, 10(4): 552–561CrossRefGoogle Scholar
  20. 20.
    Zhang L, Jin Q, Liu M. Enantioselective recognition by chiral supramolecular gels. Chemistry, an Asian Journal, 2016, 11(19): 2642–2649CrossRefGoogle Scholar
  21. 21.
    Chen X, Huang Z, Chen S Y, Li K, Yu X Q, Pu L. Enantioselective gel collapsing: A new means of visual chiral sensing. Journal of the American Chemical Society, 2010, 132(21): 7297–7299CrossRefGoogle Scholar
  22. 22.
    Tu T, Fang W W, Bao X L, Li X B, Dotz K H. Visual chiral recognition through enantioselective metallogel collapsing: Synthesis, characterization, and application of platinum-steroid low molecular mass gelators. Angewandte Chemie, 2011, 123(29): 6731–6735CrossRefGoogle Scholar
  23. 23.
    Shockravi A, Javadi A, Abouzari-Lotf E. Binaphthyl-based macromolecules: A review. RSC Advances, 2013, 3(19): 6717–6746CrossRefGoogle Scholar
  24. 24.
    Wang Q, Chen X, Tao L, Wang L, Xiao D, Yu X Q, Pu L. Enantioselective fluorescent recognition of amino alcohols by a chiral tetrahydroxyl 1, 1'-binaphthyl compound. Journal of Organic Chemistry, 2007, 72(1): 97–101CrossRefGoogle Scholar
  25. 25.
    Xu Y F, McCarroll M E. Chiral recognition of 1, 1'-binaphthyl-2, 2'-diyl hydrogenphosphate using fluorescence anisotropy. Journal of Photochemistry and Photobiology A Chemistry, 2007, 187(2): 139–145CrossRefGoogle Scholar
  26. 26.
    Hardy J G, Hirst A R, Ashworth I, Brennan C, Smith D K. Exploring molecular recognition pathways within a family of gelators with different hydrogen bonding motifs. Tetrahedron, 2007, 63(31): 7397–7406CrossRefGoogle Scholar
  27. 27.
    Dado G P, Gellman S H. Intramolecular hydrogen bonding in derivatives of beta-alanine and gamma-amino butyric acid: Model studies for the folding of unnatural polypeptide backbones. Journal of the American Chemical Society, 1994, 116(3): 1054–1062CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xuhong Zhang
    • 1
  • Haimiao Li
    • 1
  • Xin Zhang
    • 1
  • Meng An
    • 1
  • Weiwei Fang
    • 1
  • Haitao Yu
    • 1
    Email author
  1. 1.College of Chemistry and Materials ScienceHebei Normal UniversityShijiazhuangChina

Personalised recommendations