Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2 capture enhancement

  • Elaheh Mehrvarz
  • Ali Asghar GhoreyshiEmail author
  • Mohsen Jahanshahi
Research Article


A new type of activated carbon (AC) was synthesized using broom sorghum stalk as a low cost carbon source through chemical activation with H3PO4 and KOH. The AC obtained by KOH had the largest BET surface area of 1619 m2·g‒1 and the highest micropore volume of 0.671 cm3·g‒1. CO2 adsorption was enhanced by functionalizing the AC with two different amines: triethylenetetramine (TETA) and urea. The structure of the prepared ACs was characterized by Brunauer-Emmett-Teller method, scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and acid-base Boehm titration analyses. The adsorption behavior of CO2 onto raw and amine-functionalized ACs was investigated in the temperature range of 288‒308 K and pressures up to 25 bar. The amount of CO2 uptake at 298 K and 1 bar achieved by AC-TETA and AC-urea was 3.22 and 2.33 mmol·g‒1 which shows a 92% and 40% improvement compared to pristine AC (1.66 mmol·g–1), respectively. Among different model isotherms used to describe the adsorption equilibria, Sips isotherm presented a perfect fit in all cases. Gas adsorption kinetic study revealed a fast kinetics of CO2 adsorption onto the ACs. The evaluation of the isosteric heat of adsorption demonstrated the exothermic nature of the CO2 adsorption onto unmodified and modified samples.


activated carbon broom sorghum functionalization CO2 capture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu X, Zhao X, Sun L, Liu X. Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified ß-zeolite. Journal of Natural Gas Chemistry, 2009, 18(2): 167–172CrossRefGoogle Scholar
  2. 2.
    Wang X, Guo Q, Zhao J, Chen L. Mixed amine-modified MCM-41 sorbents for CO2 capture. International Journal of Greenhouse Gas Control, 2015, 37: 90–98CrossRefGoogle Scholar
  3. 3.
    Plaza M, Pevida C, Arenillas A, Rubiera F, Pis J. CO2 capture by adsorption with nitrogen enriched carbons. Fuel, 2007, 86(14): 2204–2212CrossRefGoogle Scholar
  4. 4.
    Hosseini S, Marahel E, Bayesti I, Abbasi A, Abdullah L C, Choong T S. CO2 adsorption on modified carbon coated monolith: Effect of surface modification by using alkaline solutions. Applied Surface Science, 2015, 324: 569–575CrossRefGoogle Scholar
  5. 5.
    Shafeeyan M S, Daud W M A W, Houshmand A, Shamiri A. A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 2010, 89(2): 143–151CrossRefGoogle Scholar
  6. 6.
    Wang W, Li J, Wei X, Ding J, Feng H, Yan J, Yang J. Carbon dioxide adsorption thermodynamics and mechanisms on MCM-41 supported polyethylenimine prepared by wet impregnation method. Applied Energy, 2015, 142: 221–228CrossRefGoogle Scholar
  7. 7.
    Wang X, Guo Q, Kong T. Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture. Chemical Engineering Journal, 2015, 273: 472–480CrossRefGoogle Scholar
  8. 8.
    Shafeeyan M S, Daud W M A W, Houshmand A, Arami-Niya A. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation. Applied Surface Science, 2011, 257(9): 3936–3942CrossRefGoogle Scholar
  9. 9.
    Lee C, Ong Y, Aroua M, Daud W W. Impregnation of palm shellbased activated carbon with sterically hindered amines for CO2 adsorption. Chemical Engineering Journal, 2013, 219: 558–564CrossRefGoogle Scholar
  10. 10.
    Yin G, Liu Z, Liu Q, Wu W. The role of different properties of activated carbon in CO2 adsorption. Chemical Engineering Journal, 2013, 230: 133–140CrossRefGoogle Scholar
  11. 11.
    Phalakornkule C, Foungchuen J, Pitakchon T. Impregnation of chitosan onto activated carbon for high adsorption selectivity towards CO2: CO2 capture from biohydrogen, biogas and flue gas. Journal of Sustainable Energy & Environment, 2012, 3: 153–157Google Scholar
  12. 12.
    Heidari A, Younesi H, Rashidi A, Ghoreyshi A A. Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: Effect of chemical activation. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2): 579–588CrossRefGoogle Scholar
  13. 13.
    Muniandy L, Adam F, Mohamed A R, Ng E P. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous and Mesoporous Materials, 2014, 197: 316–323CrossRefGoogle Scholar
  14. 14.
    Alaya M, Youssef A, Karman M, El-Aal H A. Textural properties of activated carbons from wild cherry stones as determined by nitrogen and carbon dioxide adsorption. Carbon Letters, 2006, 7: 9–18Google Scholar
  15. 15.
    Bagheri N, Abedi J. Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chemical Engineering Research & Design, 2009, 87(8): 1059–1064CrossRefGoogle Scholar
  16. 16.
    El-Hendawy A N A, Alexander A J, Andrews R J, Forrest G. Effects of activation schemes on porous, surface and thermal properties of activated carbons prepared from cotton stalks. Journal of Analytical and Applied Pyrolysis, 2008, 82(2): 272–278CrossRefGoogle Scholar
  17. 17.
    Nahil M A, Williams P T. Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks. Biomass and Bioenergy, 2012, 37: 142–149CrossRefGoogle Scholar
  18. 18.
    Kishor R, Ghoshal A K. APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption. Chemical Engineering Journal, 2015, 262: 882–890CrossRefGoogle Scholar
  19. 19.
    Wei J, Liao L, Xiao Y, Zhang P, Shi Y. Capture of carbon dioxide by amine-impregnated as-synthesized MCM-41. Journal of Environmental Sciences (China), 2010, 22(10): 1558–1563CrossRefGoogle Scholar
  20. 20.
    Caglayan B S, Aksoylu A E. CO2 adsorption on chemically modified activated carbon. Journal of Hazardous Materials, 2013, 252-253: 19–28CrossRefGoogle Scholar
  21. 21.
    Zhang X, Zhang S, Yang H, Feng Y, Chen Y, Wang X, Chen H. Nitrogen enriched biochar modified by high temperature CO2-ammonia treatment: Characterization and adsorption of CO2. Chemical Engineering Journal, 2014, 257: 20–27CrossRefGoogle Scholar
  22. 22.
    Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P. Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties. Microporous and Mesoporous Materials, 2008, 116(1-3): 358–364CrossRefGoogle Scholar
  23. 23.
    Houshmand A, Daud W M A W, Shafeeyan M S. Exploring potential methods for anchoring amine groups on the surface of activated carbon for CO2 adsorption. Separation Science and Technology, 2011, 46(7): 1098–1112CrossRefGoogle Scholar
  24. 24.
    Liu Z, Teng Y, Zhang K, Chen H, Yang Y. CO2 adsorption performance of different amine-based siliceous MCM-41 materials. Journal of Energy Chemistry, 2015, 24(3): 322–330CrossRefGoogle Scholar
  25. 25.
    Banisheykholeslami F, Ghoreyshi A A, Mohammadi M, Pirzadeh K. Synthesis of a carbon molecular sieve from broom corn stalk via carbon deposition of methane for the selective separation of a CO2/CH4 mixture. Clean Soil Air Water, 2015, 43(7): 1084–1092CrossRefGoogle Scholar
  26. 26.
    Keramati M, Ghoreyshi A A. Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine. Physica E, Low-Dimensional Systems and Nanostructures, 2014, 57: 161–168CrossRefGoogle Scholar
  27. 27.
    Khalili S, Ghoreyshi A A, Jahanshahi M, Pirzadeh K. Enhancement of carbon dioxide capture by amine-functionalized multi-walled carbon nanotube. Clean Soil Air Water, 2013, 41(10): 939–948Google Scholar
  28. 28.
    Feng X, Dementev N, Feng W, Vidic R, Borguet E. Detection of low concentration oxygen containing functional groups on activated carbon fiber surfaces through fluorescent labeling. Carbon, 2006, 44(7): 1203–1209CrossRefGoogle Scholar
  29. 29.
    Delavar M, Ghoreyshi A A, Jahanshahi M, Khalili S, Nabian N. Equilibria and kinetics of natural gas adsorption on multi-walled carbon nanotube material. RSC Advances, 2012, 2(10): 4490–4497CrossRefGoogle Scholar
  30. 30.
    Khoshhal S, Ghoreyshi A A, Jahanshahi M, Mohammadi M. Study of the temperature and solvent content effects on the structure of Cu-BTC metal organic framework for hydrogen storage. RSC Advances, 2015, 5(31): 24758–24768CrossRefGoogle Scholar
  31. 31.
    He J, Hong S, Zhang L, Gan F, Ho Y S. Equilibrium and thermodynamic parameters of adsorption of methylene blue onto rectorite. Fresenius Environmental Bulletin, 2010, 19: 2651–2656Google Scholar
  32. 32.
    Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh M. Characterizations of strontium (II) and barium (II) adsorption from aqueous solutions using dolomite powder. Journal of Hazardous Materials, 2011, 190(1-3): 916–921CrossRefGoogle Scholar
  33. 33.
    Qiu H, Lv L, Pan B C, Zhang Q J, Zhang WM, Zhang Q X. Critical review in adsorption kinetic models. Journal of Zhejiang University Science A, 2009, 10(5): 716–724CrossRefGoogle Scholar
  34. 34.
    Fauth D, Gray M, Pennline H, Krutka H, Sjostrom S, Ault A. Investigation of porous silica supported mixed-amine sorbents for post-combustion CO2 capture. Energy & Fuels, 2012, 26(4): 2483–2496CrossRefGoogle Scholar
  35. 35.
    Figueiredo J, Pereira M, Freitas M, Orfao J. Modification of the surface chemistry of activated carbons. Carbon, 1999, 37(9): 1379–1389CrossRefGoogle Scholar
  36. 36.
    Vukovic G D, Marinkovic A D, Colic M, Ristic M D, Aleksic R, Peric-Grujic A A, Uskokovic P S. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chemical Engineering Journal, 2010, 157(1): 238–248CrossRefGoogle Scholar
  37. 37.
    Vukovic G D, Marinkovic A D, Skapin S D, Ristic M D, Aleksic R, Peric-Grujic A A, Uskokovic P S. Removal of lead from water by amino modified multi-walled carbon nanotubes. Chemical Engineering Journal, 2011, 173(3): 855–865CrossRefGoogle Scholar
  38. 38.
    Szymanski G S, Karpinski Z, Biniak S, Swiatkowski A. swiatkowski A. The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon, 2002, 40(14): 2627–2639Google Scholar
  39. 39.
    Maroto-Valer M M, Lu Z, Zhang Y, Tang Z. Sorbents for CO2 capture from high carbon fly ashes. Waste Management (New York, N.Y.), 2008, 28(11): 2320–2328CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Elaheh Mehrvarz
    • 1
  • Ali Asghar Ghoreyshi
    • 1
    Email author
  • Mohsen Jahanshahi
    • 1
  1. 1.Chemical Engineering DepartmentBabol University of TechnologyBabol, MazandaranIran

Personalised recommendations