Advertisement

A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al2O3 catalyst

  • Enxian Yuan
  • Xiangwei Ren
  • Li WangEmail author
  • Wentao Zhao
Research Article

Abstract

The hydrogenation of 2-ethylanthraquinone (eAQ), 2-tert-amylanthraquinone (taAQ) and their mixtures with molar ratios of 1:1 and 1:2 to the corresponding hydroquinones (eAQH2 and taAQH2) were studied over a Pd/Al2O3 catalyst in a semi-batch slurry reactor at 60 °C and at 0.3 MPa. Compared to eAQ, TaAQ exhibited a significantly slower hydrogenation rate (about half) but had a higher maximum yield of H2O2 and a smaller amount of degradation products. This can be ascribed to the longer and branched side chain in taAQ, which limits its accessibility to the Pd surface and its diffusion through the pores of the catalyst. Density functional theory calculations showed that it is more difficult for taAQ to adsorb onto a Pd (111) surface than for eAQ. The hydrogenation of the eAQ/taAQ mixtures had the slowest rates, lowest H2O2 yields and the highest amounts of degradation products.

Keywords

hydrogenation hydrogen peroxide anthraquinone Pd catalyst AO process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by financial support from the National Natural Science Foundation of China (Grant No. 21676184).

References

  1. 1.
    Hong R, Feng J, He Y, Li D. Controllable preparation and catalytic performance of Pd/anodic alumina oxide@Al catalyst for hydrogenation of ethylanthraquinone. Chemical Engineering Science, 2015, 135: 274–284CrossRefGoogle Scholar
  2. 2.
    Fan S, Yi J, Wang L, Mi Z. Direct synthesis of hydrogen peroxide from H2/O2 using Pd/Al2O3 catalysts. Reaction Kinetics and Catalysis Letters, 2007, 92(1): 175–182CrossRefGoogle Scholar
  3. 3.
    Okninski A, Bartkowiak B, Sobczak K, Kublik D, Surmacz P, Rarata G, Marciniak B, Wolanski P. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014Google Scholar
  4. 4.
    Wang Q, Wang L, Wang Y, He F, Li Z, Mi Z. Study on deactivation and regeneration of Pd/Al2O3 catalyst in hydrogen peroxide production by the anthraquinone process. Reaction Kinetics and Catalysis Letters, 2004, 81(2): 297–304CrossRefGoogle Scholar
  5. 5.
    Liu G, Duan Y, Wang Y, Wang L, Mi Z. Periodically operated trickle-bed reactor for EAQs hydrogenation: Experiments and modeling. Chemical Engineering Science, 2005, 60(22): 6270–6278CrossRefGoogle Scholar
  6. 6.
    Sandelin F, Oinas P, Salmi T, Paloniemi J, Haario H. Kinetics of the recovery of active anthraquinones. Industrial & Engineering Chemistry Research, 2006, 45(3): 986–992CrossRefGoogle Scholar
  7. 7.
    Sandelin F, Oinas P, Salmi T, Paloniemi J, Haario H. Dynamic modelling of catalytic liquid-phase reactions in fixed beds—kinetics and catalyst deactivation in the recovery of anthraquinones. Chemical Engineering Science, 2006, 61(14): 4528–4539CrossRefGoogle Scholar
  8. 8.
    Drelinkiewicz A. Deep hydrogenation of 2-ethylanthraquinone over Pd/SiO2 catalyst in the liquid phase. Journal of Molecular Catalysis A Chemical, 1992, 75(3): 321–332CrossRefGoogle Scholar
  9. 9.
    Drelinkiewicz A, Waksmundzka-Góra A. Investigation of 2-ethylanthraquinone degradation on palladium catalysts. Journal of Molecular Catalysis A Chemical, 2006, 246(1-2): 167–175CrossRefGoogle Scholar
  10. 10.
    Li J, Yao H, Wang Y, Luo G. One-step preparation of Pd-SiO2 composite microspheres by the sol-gel process in a microchannel. Industrial & Engineering Chemistry Research, 2014, 53(26): 10660–10666CrossRefGoogle Scholar
  11. 11.
    Shen C, Wang Y, Xu J, Lu Y, Luo G. Preparation and the hydrogenation performance of a novel catalyst-Pd nanoparticles loaded on glass beads with an egg-shell structure. Chemical Engineering Journal, 2011, 173(1): 226–232CrossRefGoogle Scholar
  12. 12.
    Feng J, Wang H, Evans D G, Duan X, Li D. Catalytic hydrogenation of ethylanthraquinone over highly dispersed eggshell Pd/SiO2-Al2O3 spherical catalysts. Applied Catalysis A, General, 2010, 382 (2): 240–245CrossRefGoogle Scholar
  13. 13.
    Tang P, Chai Y, Feng J, Feng Y, Li Y, Li D. Highly dispersed Pd catalyst for anthraquinone hydrogenation supported on alumina derived from a pseudoboehmite precursor. Applied Catalysis A, General, 2014, 469: 312–319CrossRefGoogle Scholar
  14. 14.
    Chen H, Huang D, Su X, Huang J, Jing X, Du M, Sun D, Jia L, Li Q. Fabrication of Pd/γ-Al2O3 catalysts for hydrogenation of 2-ethyl-9,10-anthraquinone assisted by plant-mediated strategy. Chemical Engineering Journal, 2015, 262: 356–363CrossRefGoogle Scholar
  15. 15.
    Shang H, Zhou H, Zhu Z, Zhang W. Study on the new hydrogenation catalyst and processes for hydrogen peroxide through anthraquinone route. Journal of Industrial and Engineering Chemistry, 2012, 18(5): 1851–1857CrossRefGoogle Scholar
  16. 16.
    Santacesaria E, Serio M D, Russo A, Leone U, Velotti R. Kinetic and catalytic aspects in the hydrogen peroxide production via anthraquinone. Chemical Engineering Science, 1999, 54(13-14): 2799–2806CrossRefGoogle Scholar
  17. 17.
    Tan J, Zhang J, Lu Y, Xu J, Luo G. Process intensification of catalytic hydrogenation of ethylanthraquinone with gas-liquid microdispersion. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(5): 1326–1335CrossRefGoogle Scholar
  18. 18.
    Santacesaria E, Serio M D, Velotti R, Leone U. Hydrogenation of the aromatic rings of 2-ethylanthraquinone on palladium catalyst. Journal of Molecular Catalysis A Chemical, 1994, 94(1): 37–46CrossRefGoogle Scholar
  19. 19.
    Kosydar R, Drelinkiewicz A, Ganhy J P. Degradation reactions in anthraquinone process of hydrogen peroxide synthesis. Catalysis Letters, 2010, 139(3-4): 105–113CrossRefGoogle Scholar
  20. 20.
    Drelinkiewicz A. Kinetic aspects in the selectivity of deep hydrogenation of 2-ethylanthraquinone over Pd/SiO2. Journal of Molecular Catalysis A Chemical, 1995, 101(1): 61–74CrossRefGoogle Scholar
  21. 21.
    Petr J, Kurc L, Belohlav Z, Cervený L. Catalytic hydrogenation of 2-ethyl-9,10-anthrahydroquinone. Chemical Engineering and Processing: Process Intensification, 2004, 43(7): 887–894CrossRefGoogle Scholar
  22. 22.
    Jia X, Yang Y, Liu G, Pan Z. Solubility of 2-tert-butylanthraquinone in binary solvents. Fluid Phase Equilibria, 2014, 376: 165–171CrossRefGoogle Scholar
  23. 23.
    Li X, Su H, Ren G, Wang S. Effect of metal dispersion on the hydrogenation of 2-amyl anthraquinone over Pd/Al2O3 catalyst. Journal of the Brazilian Chemical Society, 2016, 27(6): 1060–1066Google Scholar
  24. 24.
    Yuan E, Wu C, Liu G, Wang L. One-pot synthesis of Pd nanoparticles on ordered mesoporous Al2O3 for catalytic hydrogenation of 2-ethyl-anthraquinone. Applied Catalysis A, General, 2016, 525: 119–127CrossRefGoogle Scholar
  25. 25.
    Liu D, Zhang J, Li D, Kong Q, Zhang T, Wang S. Hydrogenation of 2-ethylanthraquinone under Taylor flow in single square channel monolith reactors. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(3): 726–736CrossRefGoogle Scholar
  26. 26.
    Berglin T, Schoeoen N H. Kinetic and mass transfer aspects of the hydrogenation stage of the anthraquinone process for hydrogen peroxide production. Industrial & Engineering Chemistry Process Design and Development, 1981, 20(4): 615–621CrossRefGoogle Scholar
  27. 27.
    Fajt V, Kurc L, Cervený L. The effect of solvents on the rate of catalytic hydrogenation of 6-ethyl-1,2,3,4-tetrahydroanthracene-9,10-dione. International Journal of Chemical Kinetics, 2008, 40 (5): 240–252CrossRefGoogle Scholar
  28. 28.
    Drelinkiewicz A, Laitinen R, Kangas R, Pursiainen J. 2-Ethylanthraquinone hydrogenation on Pd/Al2O3. Applied Catalysis A, General, 2005, 284(1-2): 59–67CrossRefGoogle Scholar
  29. 29.
    Santacesaria E, Serio M D, Velotti R, Leone U. Kinetics, mass transfer, and palladium catalyst deactivation in the hydrogenation step of the hydrogen peroxide synthesis via anthraquinone. Industrial & Engineering Chemistry Research, 1994, 33(2): 277–284CrossRefGoogle Scholar
  30. 30.
    Li Y, Feng J, He Y, Evans D G, Li D. Controllable synthesis, structure, and catalytic activity of highly dispersed Pd catalyst supported on whisker-modified spherical alumina. Industrial & Engineering Chemistry Research, 2012, 51(34): 11083–11090CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Enxian Yuan
    • 1
  • Xiangwei Ren
    • 3
  • Li Wang
    • 1
    • 2
    Email author
  • Wentao Zhao
    • 3
  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina
  3. 3.School of ScienceTianjin UniversityTianjinChina

Personalised recommendations