Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Research on structural, spectral (IR, UV-Vis, 1H- and 13C-NMR) and light emitting properties of triisocyano-based trinuclear Au(I) complexes

  • 26 Accesses

Abstract

Triisocyano-based trinuclear gold (I), {Ph[O(CH2)4OPhNCAuPhX5]3 [X = F, complex (1), X = Br complex (2)]}, complexes are optimized at M062X/LANL2DZ/6-31G(d) level in the gas phase and molecular structures are obtained. IR, UV-Vis and NMR spectra are calculated at the same level and molecular structure of the complexes are verified. In the complexes, the environment geometry of gold (I) was almost linear and the entire structures of the complexes were found to be propeller-shaped. Some molecular structure descriptors of the complexes were calculated. It is found that µ, α, I, A, ΔE and χ values of complex (2) are higher than complex (1) and η, σ, ω and ε of the complexes are very close to each other. Light emitting properties of the complexes are investigated by computationally on the basis of Marcus theory. Transfer integrals and reorganization energies for electron and hole indicated that the complexes can be considered as a promising hole and electron transfer material for light emitting devices.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. An BK, Kwon SK, Jung SD, Park SY (2002) Enhanced emission and its switching in fluorescent organic nanoparticles. J Am Chem Soc 124(48):14410–14415. https://doi.org/10.1021/ja0269082

  2. Chen Y, Cheng G, Li K, Shelar DP, Lu W, Che CM (2014) Phosphorescent polymeric nanomaterials with metallophilic d10 d10 interactions self-assembled from [Au(NHC)2] + and [M(CN)2]−. Chem Sci 5(4):1348–1353. https://doi.org/10.1039/C3SC52989D

  3. Chen Z, Huang PS, Li Z, Yin J, Yu GA, Liu SH (2015a) Triisocyano-based trinuclear gold (I) complexes with aggregation-induced emission (AIE) and mechanochromic luminescence characteristics. Inorg Chim Acta 432:192–197. https://doi.org/10.1016/j.ica.2015.04.016

  4. Chen Z, Li Z, Yang L, Liang J, Yin J, Yu GA, Liu SH (2015b) Novel diisocyano-based dinuclear gold (I) complexes with aggregation-induced emission and mechanochromism characteristics. Dyes Pigm 121:170–177. https://doi.org/10.1016/j.dyepig.2015.05.021

  5. Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J (2012) Recent advances in organic mechanofluorochromic materials. Chem Soc Rev 41(10):3878–3896. https://doi.org/10.1039/C2CS35016E

  6. Dennington II RD, Keith TA, Millam JM (2009) GaussView 5.0, Wallingford, CT

  7. Du X, Qi J, Zhang Z, Ma D, Wang ZY (2012) Efficient non-doped near infrared organic light-emitting devices based on fluorophores with aggregation-induced emission enhancement. Chem Mater 24(11):2178–2185. https://doi.org/10.1021/cm3008733

  8. Erkan S (2019) Activity of the rocuronium molecule and its derivatives: a theoretical calculation. J Mol Struct 1189:257–264. https://doi.org/10.1016/j.molstruc.2019.04.042

  9. Figueira-Duarte TM, Mullen K (2011) Pyrene-based materials for organic electronics. Chem Rev 111(11):7260–7314. https://doi.org/10.1021/cr100428a

  10. Foresman JB, Frisch A (1996). Exploring chemistry with electronic structure methods: a guide to using Gaussian

  11. Frisch MJ, Frisch MJ, Foresman JB (1998) GAUSSIAN 98 user’s reference. Gaussian. Inc., Pittsburgh, p 15106

  12. Gruhn NE, da Silva Filho D A, Bill TG, Malagoli M, Coropceanu V, Kahn A, Brédas JL (2002) The vibrational reorganization energy in pentacene: molecular influences on charge transport. J Am Chem Soc 124(27):7918–7919. https://doi.org/10.1021/ja0175892

  13. Hong Y, Lam JW, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 29:4332–4353. https://doi.org/10.1039/B904665H

  14. Hong Y, Meng L, Chen S, Leung CWT, Da LT, Faisal M, Tang BZ (2012) Monitoring and inhibition of insulin fibrillation by a small organic fluorogen with aggregation-induced emission characteristics. J Am Chem Soc 134(3):1680–1689. https://doi.org/10.1021/ja208720a

  15. Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Sawamura M (2008) Reversible mechanochromic luminescence of [(C6F5Au) 2 (μ-1, 4-diisocyanobenzene)]. J Am Chem Soc 130(31):10044–10045. https://doi.org/10.1021/ja8019356

  16. Karakaş D, Erkan Kariper S (2014) Theoretical investigation on the vibrational and electronic spectra of three isomeric forms of dicobalt octacarbonyl. J Mol Struct 1062:77–81. https://doi.org/10.1016/j.molstruc.2013.12.075

  17. Kawaguchi K, Seki T, Karatsu T, Kitamura A, Ito H, Yagai S (2013) Cholesterol-aided construction of distinct self-organized materials from a luminescent gold (i)–isocyanide complex exhibiting mechanochromic luminescence. Chem Commun 49(97):11391–11393. https://doi.org/10.1039/C3CC47162D

  18. Kiyooka SI, Kaneno D, Fujiyama R (2013) Parr’s index to describe both electrophilicity and nucleophilicity. Tetrahedron Lett 54(4):339–342. https://doi.org/10.1016/j.tetlet.2012.11.039

  19. Kose M, Hepokur C, Karakas D, McKee V, Kurtoglu M (2016) Structural, computational and cytotoxic studies of square planar copper (II) complexes derived from dicyandiamide. Polyhedron 117:652–660. https://doi.org/10.1016/j.poly.2016.07.007

  20. Lan YK, Huang CI (2008) A theoretical study of the charge transfer behavior of the highly regioregular poly-3-hexylthiophene in the ordered state. J Phys Chem B 112(47):14857–14862. https://doi.org/10.1021/jp806967x

  21. Liang J, Chen Z, Xu L, Wang J, Yin J, Yu GA, Liu SH (2014) Aggregation-induced emission-active gold (I) complexes with multi-stimuli luminescence switching. J Mater Chem C 2(12):2243–2250. https://doi.org/10.1039/C3TC31638F

  22. Lin LC, Meng HF, Shy JT, Horng SF, Yu LS, Chen CH, Chen SA (2003) Triplet-to-singlet exciton formation in poly (p-phenylene-vinylene) light-emitting diodes. Phys Rev Lett 90(3):036601. https://doi.org/10.1103/PhysRevLett.90.036601

  23. Lu W, Kwok WM, Ma C, Chan CTL, Zhu MX, Che CM (2011) Organic triplet excited states of gold (I) complexes with oligo (o-or m-phenyleneethynylene) ligands: conjunction of steady-state and time-resolved spectroscopic studies on exciton delocalization and emission pathways. J Am Chem Soc 133(35):14120–14135. https://doi.org/10.1021/ja205831v

  24. Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5- pentaphenylsilole. Chem Commun 2001:1740. https://doi.org/10.1039/B105159H

  25. Luo X, Li J, Li C, Heng L, Dong YQ, Liu Z, Tang BZ (2011) Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli. Adv Mater 23(29):3261–3265. https://doi.org/10.1002/adma.201101059

  26. Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15(1):155–196. https://doi.org/10.1146/annurev.pc.15.100164.001103

  27. Mei J, Hong Y, Lam JW, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26(31):5429–5479. https://doi.org/10.1002/adma.201401356

  28. Mei J, Leung NL, Kwok RT, Lam JW, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115(21):11718–11940. https://doi.org/10.1021/acs.chemrev.5b00263

  29. Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Yamaguchi S (2013) Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. J Am Chem Soc 135(28):10322–10325. https://doi.org/10.1021/ja4055228

  30. Nie H, Zhao Z, Tang BZ, (2016) Aggregation-induced emission luminogens for non-doped organic light-emitting diodes. Material Matters, 11(1): 29. https://www.sigmaaldrich.com/technical-documents/articles/materialmatters/aggregation-induced-emission-luminogens.html

  31. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27(4):734–740. https://doi.org/10.1021/ic00277a030

  32. Pucci A, Ruggeri G (2011) Mechanochromic polymer blends. J Mater Chem 21(23):8282–8291. https://doi.org/10.1039/C0JM03653F

  33. Qin W, Yang Z, Jiang Y, Lam JW, Liang G, Kwok HS, Tang BZ (2015) Construction of efficient deep blue aggregation-induced emission luminogen from triphenylethene for nondoped organic light-emitting diodes. Chem Mater 27(11):3892–3901. https://doi.org/10.1021/acs.chemmater.5b00568

  34. Sagara Y, Kato T (2009) Mechanically induced luminescence changes in molecular assemblies. Nat Chem 1(8):605. https://doi.org/10.1038/nchem.411

  35. Sayin K, Karakaş D (2014) The investigation of the solvent effect on coordination of nicotinato ligand with cobalt (II) complex containing tris (2-benzimidazolylmethyl) amine: a computational study. J Mol Struct 1076:244–250. https://doi.org/10.1016/j.molstruc.2014.07.078

  36. Sayin K, Üngördü A (2019) Investigations of structural, spectral and electronic properties of enrofloxacin and boron complexes via quantum chemical calculation and molecular docking. Spectrochim Acta Part A Mol Biomol Spectrosc 220:117102. https://doi.org/10.1016/j.saa.2019.05.007

  37. Sayin K, Erkan Kariper S, Sayin TA, Karakaş D (2014) Theoretical spectroscopic study of seven zinc (II) complex with macrocyclic Schiff-base ligand. Spectrochim Acta Part A Mol Biomol Spectrosc 133:348–356. https://doi.org/10.1016/j.saa.2014.05.097

  38. Sayin K, Kurtoglu N, Kose M, Karakas D, Kurtoglu M (2016) Computational and experimental studies of 2-[(E)-hydrazinylidenemethyl]-6-methoxy-4-[(E)-phenyldiazenyl] phenol and its tautomers. J Mol Struct 1119:413–422. https://doi.org/10.1016/j.molstruc.2016.04.097

  39. Shimizu M, Hiyama T (2010) Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem Asian J 5(7):1516–1531. https://doi.org/10.1002/asia.200900727

  40. Song Q, Chen K, Sun J, Wang Y, Ouyang M, Zhang C (2014) Mechanical force induced reversible fluorescence switching of two 3-aryl-2-cyano acrylamide derivatives. Tetrahedron Lett 55(20):3200–3205. https://doi.org/10.1016/j.tetlet.2014.04.024

  41. Sun F, Jin R (2017) DFT and TD-DFT study on the optical and electronic properties of derivatives of 1, 4-bis (2-substituted-1, 3, 4-oxadiazole) benzene. Arab J Chem 10:S2988–S2993. https://doi.org/10.1016/j.arabjc.2013.11.037

  42. Tang MC, Chan AKW, Chan MY, Yam VWW (2017) Platinum and Gold complexes for OLEDs. In Photoluminescent materials and electroluminescent devices (pp. 67-109). Springer, Cham. Spectrochim Acta Part A Mol Biomol Spectrosc 144:176–182. https://doi.org/10.1007/s41061-016-0046-y

  43. Üngördü A, Sayin K (2019) Quantum chemical calculations on sparfloxacin and boron complexes. Chem Phys Lett 2019:136677. https://doi.org/10.1016/j.cplett.2019.136677

  44. Wu J, Liu W, Ge J, Zhang H, Wang P (2011) New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem Soc Rev 40(7):3483–3495. https://doi.org/10.1039/C0CS00224K

  45. Yam V. W. W., Chan C. L., Choi S. W. K., Wong K. M. C., Cheng E. C. C., Yu S. C., Cheung K. K. (2000). Synthesis, photoluminescent and electroluminescent behaviour of four-coordinate tetrahedral gold (i) complexes. X-Ray crystal structure of [Au (dppn) 2] ClElectronic supplementary information (ESI) available: characterisation data and crystal structure refinement and data for 1b, experimental details for EL measurements. See http://www.rsc.org/suppdata/cc/a9/a908521a. Chemical Communications, (1): 53–54. https://doi.org/10.1039/a908521a

  46. Yerushalmi R, Scherz A, van der Boom ME, Kraatz HB (2005) Stimuli responsive materials: new avenues toward smart organic devices. J Mater Chem 15(42):4480–4487. https://doi.org/10.1039/B505212B

  47. Yoshii R, Hirose A, Tanaka K, Chujo Y (2014) Functionalization of boron diiminates with unique optical properties: multicolor tuning of crystallization-induced emission and introduction into the main chain of conjugated polymers. J Am Chem Soc 136(52):18131–18139. https://doi.org/10.1021/ja510985v

  48. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125(19):194101. https://doi.org/10.1063/1.2370993

  49. Zhao PS, Li RQ, Song J, Guo MP (2008) Quantum chemical studies on Nicotinato Lead (II) complex [Pb(II)(C5H4NCOO)2]. Bull Korean Chem Soc 29(3):546–550. https://doi.org/10.5012/bkcs.2008.29.3.546

Download references

Acknowledgements

We are grateful to the unit of scientific research projects of Sivas Cumhuriyet University for financial supports (Project no: F-481).

Author information

Correspondence to Sultan Erkan or Duran Karakaş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Özkan, N., Erkan, S., Sayın, K. et al. Research on structural, spectral (IR, UV-Vis, 1H- and 13C-NMR) and light emitting properties of triisocyano-based trinuclear Au(I) complexes. Chem. Pap. (2020). https://doi.org/10.1007/s11696-020-01088-3

Download citation

Keywords

  • Computational research
  • Trinuclear gold (I) complexes
  • Spectroscopic studies
  • Reorganization energy