Advertisement

Synthesis and bacterial inhibition of novel Ag2S–N–CQD composite material

  • Kunjie WangEmail author
  • Lei Liang
  • Jialin Xu
  • Hongxia Li
  • Mei Du
  • Xiaoliang Zhao
  • Deyi Zhang
  • Huixia Feng
  • Haiyan FanEmail author
Original Paper
  • 23 Downloads

Abstract

The present work aims to combine carbon quantum dots (CQDs) with the good water solubility, biocompatibility, and low toxicity and nano-sized silver sulfide with excellent antibacterial effect in the synthesized composite. The composite was further treated with polyethyleneimine (PEI) and conjugated with graphene oxide (GO). The as-prepared composite Ag2S–CQDs–PEI–GO exhibits a core of Ag2S with the size of 20–50 nm and the shell of CQDs with the average particle size of 1.8 nm. The core shell structure is loaded on the template of PEI–GO. Strong antibacterial effect was observed on Ag2S–CQDs composite against four strands of bacteria Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), and Pseudomonas aeruginosa (P. aeruginosa). We briefly discussed the bacteriostatic mechanism of the composite. The as-prepared composite has huge potential in the development of biomedicine.

Keywords

Carbon quantum dots Ag2Composite materials Inhibition 

Notes

Acknowledgements

We appreciate the financial support from the National Natural Science Foundation of China Project (21867015; 31860250). This work is also supported by The Foundation of Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education.

References

  1. Anand A, Unnikrishnan B, Wei S, Chou C, Zhang L, Huang C (2018) Graphene oxide and carbon dots as broad-spectrum antimicrobial agents—a minireview. Nanoscale Horizons.  https://doi.org/10.1039/C8NH00174J CrossRefGoogle Scholar
  2. Araujo CMB, Nascimento GFO, Costa GRB, Silva KS, Baptisttella AMS, Ghislandi MG, Sobrinho MAM (2018) Adsorptive removal of dye from real textile wastewater using graphene oxide produced via modifications of Hummers method. Chem Eng Commun.  https://doi.org/10.1080/00986445.2018.1534232 CrossRefGoogle Scholar
  3. Bushra R, Naushad M, Sharma G, Azam A, Alothman ZA (2017) Synthesis of polyaniline based composite material and its analytical applications for the removal of highly toxic Hg2+ metal ion: antibacterial activity against E. coli. Korean J Chem Eng 34:1970–1979.  https://doi.org/10.1007/s11814-017-0076-3 CrossRefGoogle Scholar
  4. Cao L, Sahu S, Anilkumar P, Bunker CE, Xu J, Fernando KAS, Wang P, Guliants EA, Tackett KN, Sun YP (2011) Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. Am Chem Soc.  https://doi.org/10.1021/ja200804h CrossRefGoogle Scholar
  5. Chen J, Deng F, Hu YY, Sun J, Yang YG (2015) Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell. J Power Sources 290:80–86.  https://doi.org/10.1016/j.jpowsour.2015.03.033 CrossRefGoogle Scholar
  6. Choi H, Ko SJ, Choi Y, Joo P, Kim T, Lee BR et al (2013) Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat Photon 7(9):732–738.  https://doi.org/10.1038/nphoton.2013.181 CrossRefGoogle Scholar
  7. Dam BV, Nie H, Ju B, Marino E, Paulusse JMJ, Schall P (2017) Excitation-dependent photoluminescence from single-carbon dots. Small 13(48):1702098.  https://doi.org/10.1002/smll.201702098 CrossRefGoogle Scholar
  8. Dong YQ, Wang R, Li H, Shao JW, Chi YW, Lin XM, Chen GM (2012) Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50(8):2810–2815.  https://doi.org/10.1016/j.carbon.2012.02.046 CrossRefGoogle Scholar
  9. Dou QQ, Fang XT, Jiang S, Chee PL, Lee TC, Loh XJ (2015) Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Adv 5:46817–46822.  https://doi.org/10.1039/C5RA07968C CrossRefGoogle Scholar
  10. Fernando KAS, Sahu SP, Liu Y, Lewis WK, Guliants E, Jafariyan A et al (2015) Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl Mater Interfaces 7(16):8363–8376.  https://doi.org/10.1021/acsami.5b00448 CrossRefPubMedGoogle Scholar
  11. Fu M, Ehrat F, Wang Y, Milowska KZ, Reckmeier C, Rogach AL, Stolarczyk JK et al (2015) Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett 15(9):6030–6035.  https://doi.org/10.1021/acs.nanolett.5b02215 CrossRefPubMedGoogle Scholar
  12. Ghafoor S, Hussain SZ, Waseem S, Arshad SN (2018) Photo-reduction of heavy metal ions and photodisinfection of pathogenic bacteria under simulated solar light using photosensitized TiO2 nanofibers. RSC Adv 8:20354–20362.  https://doi.org/10.1039/c8ra01237g CrossRefGoogle Scholar
  13. Gupta VK, Saleh TA, Pathanla D, Rathore BS, Sharma G (2014) A cellulose acetate based nanocomposite for photocatalytic degradation of methylene blue dye under solar light. Ionics 21:1787–1793.  https://doi.org/10.1007/s11581-014-1323-9 CrossRefGoogle Scholar
  14. Gupta VK, Agarwal S, Tyagi I, Pathania D, Rathore BS, Sharma G (2015) Synthesis, characterization and analytical application of cellulose acetate-tin (IV) molybdate nanocomposite ion exchanger: binary separation of heavy metal ions and antimicrobial activity. Ionics 21:2069–2078.  https://doi.org/10.1007/s11581-015-1368-4 CrossRefGoogle Scholar
  15. Hayden SC, Allam NK, El-Sayed MA (2010) TiO2 nanotube/CdS hybrid electrodes: extraordinary enhancement in the inactivation of Escherichia coli. Am Chem Soc.  https://doi.org/10.1021/ja107034z CrossRefGoogle Scholar
  16. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. Am Chem Soc 80:1939.  https://doi.org/10.1021/ja01539a017 CrossRefGoogle Scholar
  17. Irimpan L, Krishnan B, Nampoori VPN, Radhakrishnan P (2008) Nonlinear optical characteristics of nanocomposites of ZnO–TiO2–SiO2. Opt Mater 31:361–365.  https://doi.org/10.1016/j.optmat.2008.05.009 CrossRefGoogle Scholar
  18. Kovacova M, Markovic ZM, Humpolicek P, Micusik M, Kleinova A, Danko M et al (2018) Carbon quantum dots modified polyurethane nanocomposites as effective photocatalytic and antibacterial agents. ACS Biomater Sci Eng 4(12):3983–3993.  https://doi.org/10.1021/acsbiomaterials.8b00582 CrossRefGoogle Scholar
  19. Kumari P, Chandran P, Khan SS (2014) Synthesis and characterization of silver sulfide nanoparticles for photocatalytic and antimicrobial applications. J Photochem Photobiol B Biol 141:235–240.  https://doi.org/10.1016/j.jphotobiol.2014.09.010 CrossRefGoogle Scholar
  20. Li D, Wan D, Zhu X, Wang Y, Han Z, Han S, Shan Y, Huang F (2014) Solar energy materials & solar cells broadband antireflection TiO2–SiO2 stack coatings with refractive-index-grade structure and their applications to Cu (In, Ga) Se2 solar cells. Sol Energy Mater Sol Cells 130:505–512.  https://doi.org/10.1016/j.solmat.2014.07.042 CrossRefGoogle Scholar
  21. Li YJ, Harroun SG, Su YC, Huang CF, Unnikrishnan B, Lin HJ, Huang CC (2016) Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Adv Healthc Mater.  https://doi.org/10.1002/adhm.201600297 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Luo PG, Yang F, Yang ST, Sonkar SK, Yang L, Broglie JJ, Liu Y, Sun YP (2014) Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv 4(21):10791.  https://doi.org/10.1039/c3ra47683a CrossRefGoogle Scholar
  23. Ma X, Zhao Y, Jiang X, Liu W, Liu S, Tang Z (2012) Facile preparation of Ag2S/Ag semiconductor/metal heteronanostructures with remarkable antibacterial properties. Chem Phys Chem 13:2531–2535.  https://doi.org/10.1002/cphc.201101013 CrossRefPubMedGoogle Scholar
  24. Pang M, Hu J, Zeng HC (2010) Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. Am Chem Soc 22:10771–10785.  https://doi.org/10.1021/ja102105q CrossRefGoogle Scholar
  25. Pinto AM, Goncalves IC, Magalhaes FD (2013) Graphene-based materials biocompatibility: a review. Colloids Surf B Biointerfaces 111:188–202.  https://doi.org/10.1016/j.colsurfb.2013.05.022 CrossRefPubMedGoogle Scholar
  26. Sadovnikov SI, Kuznetsova YV, Rempel AA (2016) Nano-structures & nano-objects Ag2S silver sulfide nanoparticles and colloidal solutions : synthesis and properties. Nano-Struct Nano-Objects 7:81–91.  https://doi.org/10.1016/j.nanoso.2016.06.004 CrossRefGoogle Scholar
  27. Sharma G, Naushad M, Pathania D, Kumar A (2015) A multifunctional nanocomposite pectin thorium (IV) tungstomolybdate for heavy metal separation and photoremediation of malachite green. Desalin Water Treat 57:19443–19455.  https://doi.org/10.1080/19443994.2015.1096834 CrossRefGoogle Scholar
  28. Sharma G, Alothman ZA, Kumar A, Sharma S, Ponnusamy SK, Naushad M (2017a) Fabrication and characterization of a nanocomposite hydrogel for combined photocatalytic degradation of a mixture of malachite green and fast green dye. Nanotechnol Environ Eng 2:4.  https://doi.org/10.1007/s41204-017-0014-y CrossRefGoogle Scholar
  29. Sharma G, Bhogal S, Naushad M, Inamuddin Kumar A, Stadler F (2017b) Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants. J Photochem Photobiol A 347:235–243.  https://doi.org/10.1016/j.jphotochem.2017.07.001 CrossRefGoogle Scholar
  30. Sharma G, Dionysiou DD, Sharma S, Kumar A, AI-Muhtaseb AHA, Naushad M, Stadier FJ (2018a) Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B. Catalysis Today 335:437–451.  https://doi.org/10.1016/j.molliq.2018.12.126 CrossRefGoogle Scholar
  31. Sharma G, Kumar A, Sharma S, Al-Saeedi SI, Al-Senanid GM, Nafadye A et al (2018b) Fabrication of oxidized graphite supported La2O3/ZrO2 nanocomposite for the photoremediation of toxic fast green dye. J Mol Liq 277:738–748.  https://doi.org/10.1016/j.molliq.2018.12.126 CrossRefGoogle Scholar
  32. Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143.  https://doi.org/10.1016/j.carbon.2015.04.043 CrossRefGoogle Scholar
  33. Sun Y, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. Am Chem Soc.  https://doi.org/10.1021/ja062677d CrossRefGoogle Scholar
  34. Sun B, Qiao Z, Shang K, Fan H, Ai S (2013) Facile synthesis of silver sulfide/bismuth sulfide nanocomposites for photocatalytic inactivation of Escherichia coli under solar light irradiation. Mater Lett 91:142–145.  https://doi.org/10.1016/j.matlet.2012.09.074 CrossRefGoogle Scholar
  35. Wang K, Ji Q, Xu J, Li H, Zhang D, Liu X, Wu Y, Fan H (2018) Highly sensitive and selective detection of amoxicillin using carbon quantum dots derived from beet. J Fluoresc 28(3):759–765.  https://doi.org/10.1007/s10895-018-2237-0 CrossRefPubMedGoogle Scholar
  36. Wu X, Liao L, Du W, Qin A (2015) Near infrared emission of Ag2S quantum dots and their fluorescence quenched by gold mamoparticles. Proc Eng 102:273–277.  https://doi.org/10.1016/j.proeng.2015.01.143 CrossRefGoogle Scholar
  37. Wu X, Wu L, Cao X, Li Y, Liu A, Liu S (2018) Nitrogen-doped carbon quantum dots for fluorescence detection of Cu2+ and electrochemical monitoring of bisphenol A. RSC Adv 8:20000–20006.  https://doi.org/10.1039/C8RA03180K CrossRefGoogle Scholar
  38. Xie Y, Yoo SH, Chen C, Cho SO (2012) Ag2S quantum dots-synthesized TiO2 nanotube array photoelectrodes. Mater Sci Eng B 177:106–111.  https://doi.org/10.1016/j.mesb.2011.09.021 CrossRefGoogle Scholar
  39. Xu H, Yang X, Li G, Zhao C, Liao X (2015) Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem 63(30):6707–6714.  https://doi.org/10.1021/acs.jafc.5b02319 CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.College of Petrochemical TechnologyLanzhou University of TechnologyLanzhouChina
  2. 2.School of Science and TechnologyNazarbayev UniversityAstanaKazakhstan
  3. 3.Key Laboratory of Eco-functional Polymer Materials of the Ministry of EducationNorthwest Normal UniversityLanzhouChina

Personalised recommendations