Advertisement

Discovery of new effective N-alkyl-3,4-diarylmaleimides-based drugs for reversing the bacterial resistance to rhodamine 6G in Bacillus subtilis

  • Claudia Leticia Mendoza-MacíasEmail author
  • Cesar Rogelio Solorio-Alvarado
  • Angel Josabad Alonso-Castro
  • Clara Alba-Betancourt
  • Martha Alicia Deveze-Álvarez
  • Felipe Padilla-Vaca
  • Arturo Reyes-Gualito
Original Paper
  • 2 Downloads

Abstract

Multidrug resistance (MDR) is a great concern worldwide. There is a great need to develop new drugs with the potential to attack target cells that show MDR phenotype. The purpose of this study was to assess the reversing effect of new N-alkyl-3,4-diarylmaleimides on Bacillus subtilis resistant to rhodamine 6G as an indicator of its activity as modulators of efflux pumps and their additional potential as new antimicrobials. The efflux pump modulator effects of N-alkyl-3-4-diarylmaleimides were tested using the minimal inhibitory concentration (MIC) method on B. subtilis wild type and B. subtilis resistant to R6G, as well as on MDR bacteria isolated from clinical samples (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecium, and Acinetobacter baumannii). In addition, their antimicrobial activity was evaluated on clinical isolates. Five N-alkyl-3,4-diarylmaleimides showed the highest reversing activity on the resistance in the Bacillus model as well as with the bacteria isolated from clinical samples. Antimicrobial activity was observed in N-alkyl-3,4-diarylmaleimides against bacteria isolated from clinical samples. The results suggest that N-alkyl-3,4-diarylmaleimides have a potential activity in reversing MDR phenotype and as antimicrobials and may be considered as a potentially molecules to improve chemotherapy on resistant cells.

Keywords

Bacillus subtilis Multidrug resistance N-alkyl-3 4-Diarylmaleimides Antimicrobial 

Notes

Acknowledgements

The authors thank the Directorate for Research Support and Postgraduate Programs (University of Guanajuato) for the financial support granted to Dra. Claudia Leticia Mendoza Macías and for the grant CIIC-054 -2018 of Convocatoria Institucional de Investigación Científica 2018. We gratefully acknowledge Aidee Guadalupe Aguilar Granados, Claudia Teresa Carranza López and Sarahí Montserrat García Miranda for their contribution in antimicrobial assays for this work.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

Supplementary material

11696_2019_992_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2702 kb)

References

  1. Ardebili A, Lari AR, Talebi M (2014) Correlation of ciprofloxacin resistance with the AdeABC efflux system in Acinetobacter baumannii clinical isolates. Ann Lab Med 34:433–438.  https://doi.org/10.3343/alm.2014.34.6.433 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, Piddock LJ, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya HI (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9(12):894–896.  https://doi.org/10.1038/nrmicro2693 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cabibbe AM, Cirillo DM (2016) Best approaches to drug-resistance surveillance at the country level. Int J Mycobacteriol 1:S40–S41.  https://doi.org/10.1016/j.ijmyco.2016.09.010 CrossRefGoogle Scholar
  4. Chang C, Bahadduri PM, Polli JE, Swaan PW, Ekins S (2006) Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metab Dispos 34:1976–1984.  https://doi.org/10.1124/dmd.106.012351 CrossRefPubMedGoogle Scholar
  5. Clinical and Laboratory Standard Institute (CLSI) (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In: Approved standard—Ninth Edition. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards InstituteGoogle Scholar
  6. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV, Luisi BF (2018) Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 16:523–539.  https://doi.org/10.1038/s41579-018-0048-6 CrossRefPubMedGoogle Scholar
  7. Fojo T, Bates S (2003) Strategies for reversing drug resistance. Oncogene 22:7512–7523.  https://doi.org/10.1038/sj.onc.1206951 CrossRefPubMedGoogle Scholar
  8. Gibbons S, Oluwatuyi M, Kaatz GW (2003) A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J Antimicrob Chemother 51:13–17.  https://doi.org/10.1093/jac/dkg044 CrossRefPubMedGoogle Scholar
  9. Grácio MA, dos Santos Grácio A J, Viveiros M, Amaral L (2003) Since phenothiazines alter antibiotic susceptibility of microorganisms by inhibiting efflux pumps, are these agents useful for evaluating similar pumps in phenothiazine-sensitive parasites? Int J Antimicrob Agents 22:347–351.  https://doi.org/10.1016/S0924-8579(03)00204-8 CrossRefPubMedGoogle Scholar
  10. Gutiérrez-Cano JR, Nahide PD, Ramadoss V, Satkar Y, Ortiz-Alvarado R, Alba-Betancourt C, Mendoza-Macías CL, Solorio-Alvarado CR (2017) Synthesis and biological evaluation of new 3,4-diarylmaleimides as enhancers (modulators) of doxorubicin cytotoxic activity on cultured tumor cells from a real case of breast cancer. J Mex Chem Soc 61:41–49.  https://doi.org/10.29356/jmcs.v61i1.126 CrossRefGoogle Scholar
  11. Hebecker S, Krausze J, Hasenkampf T, Schneider J, Groenewold M, Reichelt J, Jahn D, Heinz DW, Moser J (2015) Structures of two bacterial resistance factors mediating tRNA-dependent aminoacylation of phosphatidylglycerol with lysine or alanine. Proc Natl Acad Sci USA. 112:10691–10696.  https://doi.org/10.1073/pnas.1511167112 CrossRefPubMedGoogle Scholar
  12. Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha CJ, Jeong BC, Lee SH (2017) Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol 7:55.  https://doi.org/10.3389/fcimb.2017.00055 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Leus IV, Weeks JW, Bonifay V, Smith L, Richardson S, Zgurskaya HI (2018) Substrate specificities and efflux efficiencies of RND efflux pumps of Acinetobacter baumannii. J Bacteriol 200:e00049–18.  https://doi.org/10.1128/JB.00049-18 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281.  https://doi.org/10.1111/j.1469-0691.2011.03570.x CrossRefGoogle Scholar
  15. Neyfakh AA (2002) Mystery of multidrug transporters: the answer can be simple. Mol Microbiol 44:1123–1130.  https://doi.org/10.1046/j.1365-2958.2002.02965.x CrossRefPubMedGoogle Scholar
  16. Neyfakh AA, Bidnenko VE, Chen LB (1991) Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci USA 88:4781–4785.  https://doi.org/10.1073/pnas.88.11.4781 CrossRefPubMedGoogle Scholar
  17. Panov AA, Lavrenov SN, Simonov AY, Mirchink EP, Isakova EB, Trenin AS (2019) Synthesis and antimicrobial activity of 3,4-bis(arylthio)maleimides. J Antibiot (Tokyo) 72:122–124.  https://doi.org/10.1038/s41429-018-0122-3 CrossRefGoogle Scholar
  18. Pokharel D, Roseblade A, Oenarto V, Lu JF, Bebawy M (2017) Proteins regulating the intercellular transfer and function of P-glycoprotein in multidrug-resistant cancer. Ecancermedicalscience 11:768.  https://doi.org/10.3332/ecancer.2017.768 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Teodori E, Dei S, Martelli C, Scapecchi S, Gualtieri F (2006) The functions and structure of ABC transporters: implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance (MDR). Curr Drug Targets 7:893–909.  https://doi.org/10.2174/138945006777709520 CrossRefPubMedGoogle Scholar
  20. Wiese M, Pajeva IK (2001) Structure-activity relationships of multidrug resistance reversers. Curr Med Chem 8:685–713.  https://doi.org/10.2174/0929867013373138 CrossRefPubMedGoogle Scholar
  21. Xiong M, Bao Y, Xu X, Wang H, Han Z, Wang Z, Liu Y, Huang S, Song Z, Chen J, Peek RM Jr, Yin L, Chen LF, Cheng J (2017) Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides. Proc Natl Acad Sci USA 114:12675–12680.  https://doi.org/10.1073/pnas.1710408114 CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Claudia Leticia Mendoza-Macías
    • 1
    Email author
  • Cesar Rogelio Solorio-Alvarado
    • 2
  • Angel Josabad Alonso-Castro
    • 1
  • Clara Alba-Betancourt
    • 1
  • Martha Alicia Deveze-Álvarez
    • 1
  • Felipe Padilla-Vaca
    • 3
  • Arturo Reyes-Gualito
    • 1
  1. 1.División de Ciencias Naturales y Exactas, Departamento de FarmaciaUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.División de Ciencias Naturales y Exactas, Departamento de QuímicaUniversidad de GuanajuatoGuanajuatoMexico
  3. 3.División de Ciencias Naturales y Exactas, Departamento de BiologíaUniversidad de GuanajuatoGuanajuatoMexico

Personalised recommendations