Advertisement

CTAB-templated synthesis and characterization of nanorod-shaped NiCo2O4 crystals for supercapacitor application

  • G. SivashanmugamEmail author
  • P. Anbusrinivasan
Original Paper
  • 9 Downloads

Abstract

In this endeavor, NiCo2O4 crystals were synthesized through facile, cost-effective cetyltrimethylammonium bromide (CTAB), templated precipitation technique. The formation of NiCo2O4 crystals was evaluated by differential scanning calorimetry (DSC), X-ray diffraction, and Fourier transform infrared spectroscopic studies. The surface morphologies of NiCo2O4 nanocrystals were closely associated with the CTAB concentration, which has a significant effect on the electrochemical performance of the prepared nanocrystals. The freshly prepared crystal demonstrates a well-defined one-dimensional nanorod structure. Moreover, the electrochemical features of all the freshly synthesized NiCo2O4 crystals were examined by using cyclic voltammetry (CV), chronopotentiometric techniques. Among the different NiCo2O4 crystals, the best NiCo2O4-D (prepared using 0.02 M of CTAB solution) electrode material showed an outstanding performance with a high specific capacitance of 809 Fg−1 at a scan rate of 5 m V s−1 and displaying an exceptional cycling stability of 94% of the initial capacitance retention, even after 3000 continuous CV cycles at a high scan rate of 100 mV s−1 in an aqueous 1 M KOH electrolyte solution. Hence, the distinctive CTAB template NiCo2O4-D crystal could be employed as a significant candidate for supercapacitor application.

Keywords

NiCo2O4 crystals CTAB-assisted synthesis Energy storage Supercapacitors 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

References

  1. Anandan K, Rajendran V (2012) Structural, optical and magnetic properties of well-dispersed NiO nanoparticles synthesized by CTAB assisted solvothermal process. Nanosci Nanotechnol 2:24–29Google Scholar
  2. Balasingam SK, Lee S, Jun Y (2015) Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans.  https://doi.org/10.1039/c5dt01985k CrossRefPubMedGoogle Scholar
  3. Balasubramaniam M, Balakumar S (2016a) Exploration of electrochemical properties of zinc antimonate nanoparticles as supercapacitor electrode material. New J Chem 42:6613–6616.  https://doi.org/10.1039/c8nj00196k CrossRefGoogle Scholar
  4. Balasubramaniam M, Balakumar S (2016b) Exploration of electrochemical properties of zinc antimonate nanoparticles as supercapacitor electrode material. Mater Sci Semicond Process 56:287–294.  https://doi.org/10.1016/j.mssp.2016.09.014 CrossRefGoogle Scholar
  5. Behzad H, Ghodsi FE (2018) PVP-assisted enhancement in ion storage performance of sol-gel derived nano-structured NiCo2O4 thin films as battery-type electrode. Mater Res Bull 99:336–342.  https://doi.org/10.1016/j.materresbull.2017.11.031 CrossRefGoogle Scholar
  6. Chang HW, Lu YR, Chen JL, Chen CL, Lee JF, Chen JM, Tsai YC, Yeh PH, Chou WC, Dong CL (2016) Electrochemical and: in situ X-ray spectroscopic studies of MnO2/reduced graphene oxide nanocomposites as a supercapacitor. Phys Chem Chem Phys 18:18705–18718.  https://doi.org/10.1039/c6cp01192f CrossRefPubMedGoogle Scholar
  7. Chen F, Liu X, Zhang Z, Zhang N, Pan A, Liang S, Ma R (2016) Controllable fabrication of urchin-like Co3O4 hollow spheres for high-performance supercapacitors and lithium–ion batteries. Dalt Trans 45:15155–15161.  https://doi.org/10.1039/c6dt02603f CrossRefGoogle Scholar
  8. Ding R, Qi L, Wang H (2012) A facile and cost-effective synthesis of mesoporous NiCo2O4 nanoparticles and their capacitive behavior in electrochemical capacitors. J Solid State Electrochem 16:3621–3633.  https://doi.org/10.1007/s10008-012-1798-0 CrossRefGoogle Scholar
  9. Du J, Zhou G, Zhang H, Cheng C, Ma J, Wei W, Chen L, Wang T (2013) Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. ACS Appl Mater Interfaces 5:7405–7409.  https://doi.org/10.1021/am4017335 CrossRefPubMedGoogle Scholar
  10. Haldorai Y, Huh YS, Han YK (2015) Surfactant-assisted hydrothermal synthesis of flower-like tin oxide/graphene composites for high-performance supercapacitors. New J Chem 39:8505–8512.  https://doi.org/10.1039/c5nj01442e CrossRefGoogle Scholar
  11. He G, Wang L, Chen H, Sun X, Wang X (2013) Preparation and performance of NiCo2O4 nanowires-loaded graphene as supercapacitor material. Mater Lett 98:164–167.  https://doi.org/10.1016/j.matlet.2013.02.035 CrossRefGoogle Scholar
  12. Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423.  https://doi.org/10.1039/c5ta05523g CrossRefGoogle Scholar
  13. Khalid S, Cao C, Ahmad A, Cao C, Wang L, Tanveer M, Aslam I, Tahir M, Idrees F, Zhu Y (2015) Microwave assisted synthesis of mesoporous NiCo2O4 nanosheets as electrode material for advanced flexible supercapacitors. RSC Adv 5:33146–33154.  https://doi.org/10.1039/c5ra02180d CrossRefGoogle Scholar
  14. Kim M, Oh I, Ju H, Kim J (2016) Introduction of Co3O4 into activated honeycomb-like carbon for the fabrication of high performance electrode materials for supercapacitors. Phys Chem Chem Phys 18:9124–9132.  https://doi.org/10.1039/c6cp00384b CrossRefPubMedGoogle Scholar
  15. Lei Y, Li J, Wang Y, Gu L, Chang Y, Yuan H, Xiao D (2014) Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor. ACS Appl Mater Interfaces 6:1773–1780.  https://doi.org/10.1021/am404765y CrossRefPubMedGoogle Scholar
  16. Mendoza-Sánchez B, Brousse T, Ramirez-Castro C, Nicolosi V, Cl Ramirez-Castro (2013) An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochim Acta 91:253–260.  https://doi.org/10.1016/j.electacta.2012.11.127 CrossRefGoogle Scholar
  17. Qiu Y, Li X, Bai M, Wang H, Xue D, Wang W, Cheng J (2017) Pseudocapacitive behaviors of mesoporous nickel-cobalt oxide nanoplate electrodes in different electrolyte systems. New J Chem 41:2124–2130.  https://doi.org/10.1039/C6NJ03688K CrossRefGoogle Scholar
  18. Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl Mater Interfaces 4:4484–4490.  https://doi.org/10.1021/am301162p CrossRefPubMedGoogle Scholar
  19. Shanmugavalli V, Vishista K (2019) Low-cost Synthesis of cubic spinel structured high efficient NiCo2O4/polyaniline nanocomposite for supercapacitor application. Mater Res Express. 6:1–10.  https://doi.org/10.1088/2053-1591/aae8ee CrossRefGoogle Scholar
  20. Shirsath SR, Pinjari DV, Gogate PR, Sonawane SH, Pandit AB (2013) Ultrasound assisted synthesis of doped TiO2 nano-particles: characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent. Ultrason Sonochem 20:277–286.  https://doi.org/10.1016/j.ultsonch.2012.05.015 CrossRefPubMedGoogle Scholar
  21. Sun DS, Li YH, Wang ZY, Cheng XP, Jaffer S, Zhang YZ (2016) Understanding the mechanism of hydrogenated NiCo2O4 nanograss supported on Ni foam for enhanced-performance supercapacitors. J Mater Chem A 4:5198–5204.  https://doi.org/10.1039/C6TA00928J CrossRefGoogle Scholar
  22. Wang H, Wang X (2013) Growing nickel cobaltite nanowires and nanosheets on carbon cloth with different pseudocapacitive performance. ACS Appl Mater Interfaces 5:6255–6260.  https://doi.org/10.1021/am4012484 CrossRefPubMedGoogle Scholar
  23. Wang H, Chris H, Mb Holt, Li Z, Tan X, Amirkhiz BS, Xu Z, Olsen BC, Stephenson T, Mitlin D (2012) Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5:605–617.  https://doi.org/10.1007/s12274-0120246-x CrossRefGoogle Scholar
  24. Wang X, Li M, Chang M, Wang Y, Chen B, Zhang L, Wu Y (2015) Orientated Co3O4 nanocrystals on MWCNTs as superior battery-type positive electrode material for a hybrid capacitor. J Electrochem Soc 162:A1966–A1971.  https://doi.org/10.1149/2.0041511jes CrossRefGoogle Scholar
  25. Wang N, Liu Q, Kang D, Gu J, Zhang W, Zhang D (2016a) facile self-cross-linking synthesis of 3D nanoporous Co3O4/carbon hybrid electrode materials for supercapacitors. ACS Appl Mater Interfaces 8:16035–16044.  https://doi.org/10.1021/acsami.6b03527 CrossRefPubMedGoogle Scholar
  26. Wang Y, Chai H, Dong H, Xu J, Jia D, Zhou W (2016b) Superior cycle stability performance of quasi-cuboidal CoV2O6 microstructures as electrode material for supercapacitors. ACS Appl Mater Interfaces 8:27291–27297.  https://doi.org/10.1021/acsami.6b07857 CrossRefPubMedGoogle Scholar
  27. Wu J, Guo P, Mi R, Liu X, Zhang H, Mei J, Liu H, Lau WM, Liu LM (2015) Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors. J Mater Chem A 3:15331–15338.  https://doi.org/10.1039/c5ta02719e CrossRefGoogle Scholar
  28. Xiao J, Yang S (2011) Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Adv 1:588–595.  https://doi.org/10.1039/c1ra00342a CrossRefGoogle Scholar
  29. Xiao J, Yang S (2012) Bio-inspired synthesis of NaCl-type CoxNi1−xO (0 ≤ x < 1) nanorods on reduced graphene oxide sheets and screening for asymmetric electrochemical capacitors. J Mater Chem 22:12253–12262.  https://doi.org/10.1039/c2jm31057k CrossRefGoogle Scholar
  30. Xiao H, Yao S, Liu H, Qu F, Zhang X, Wu X (2016) NiO nanosheet assembles for supercapacitor electrode materials. Prog Nat Sci Mater Int 26:271–275.  https://doi.org/10.1016/j.pnsc.2016.05.007 CrossRefGoogle Scholar
  31. Xu S, Yang D, Zhang F, Liu J, Guo A, Hou F (2015) Fabrication of NiCo2O4 and carbon nanotube nanocomposite films as a high-performance flexible electrode of supercapacitors. RSC Adv 5:74032–74039.  https://doi.org/10.1039/c5ra12855b CrossRefGoogle Scholar
  32. Xu J, Su D, Bao W, Zhao Y, Xie X, Wang G (2016) Rose flower-like NiCo2O4 with hierarchically porous structures for highly reversible lithium storage. J Alloys Compd 684:691–698.  https://doi.org/10.1016/j.jallcom.2016.05.252 CrossRefGoogle Scholar
  33. Xue B, Li K, Feng L, Lu J, Zhang L (2017) Graphene wrapped porous Co3O4/NiCo2O4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor. Electrochim Acta 239:36–44.  https://doi.org/10.1016/j.electacta.2017.04.005 CrossRefGoogle Scholar
  34. Yao D, Ouyang Y, Jiao X, Ye H, Lei W, Xia X, Lu L, Hao Q (2018) Hierarchical NiO@NiCo2O4 core-shell nanosheet arrays on Ni foam for high-performance electrochemical supercapacitors. Ind Eng Chem Res 57:6246–6256.  https://doi.org/10.1021/acs.iecr.8b00467 CrossRefGoogle Scholar
  35. Yedluri AK, Kim HJ (2019) Enhanced electrochemical performance of nanoplate nickel cobaltite (NiCo2O4) supercapacitor applications. RSC Adv 9:1115–1122.  https://doi.org/10.1039/c8ra09081e CrossRefGoogle Scholar
  36. Yesuraj J, Suthanthiraraj SA (2019) Bio-molecule templated hydrothermal synthesis of ZnWO4 nanomaterial for high-performance supercapacitor electrode application. J Mol Struct 1181:131–141.  https://doi.org/10.1016/j.molstruc.2018.12.087 CrossRefGoogle Scholar
  37. Yesuraj J, Austin Suthanthiraraj S, Padmaraj O (2019a) Synthesis, characterization and electrochemical performance of DNA-templated Bi2MoO6 nanoplates for supercapacitor applications. Mater Sci Semicond Process 90:225–235.  https://doi.org/10.1016/j.mssp.2018.10.030 CrossRefGoogle Scholar
  38. Yesuraj J, Padmaraj O, Suthanthiraraj SA (2019b) Synthesis, characterization, and improvement of supercapacitor properties of NiMoO4 nanocrystals with polyaniline. J Inorg Organomet Polym Mater.  https://doi.org/10.1007/s10904-019-01189-x CrossRefGoogle Scholar
  39. Yin H, Zhan T, Qin D, He X, Nie Q, Gong J (2017) Self-assembly of dandelion-like NiCo2O4 hierarchical microspheres for non-enzymatic glucose sensor. Inorg Nano Metal Chem 47:1560–1567.  https://doi.org/10.1080/24701556.2017.1357610 CrossRefGoogle Scholar
  40. Yuan C, Li J, Hou L, Yang L, Shen L, Zhang X (2012) Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors. J Mater Chem 22:16084–16090.  https://doi.org/10.1039/c2jm32351f CrossRefGoogle Scholar
  41. Zhang C, Chen Q, Zhan H (2016) Supercapacitors based on reduced graphene oxide nanofibers supported Ni(OH)2 nanoplates with enhanced electrochemical performance. ACS Appl Mater Interfaces 8:22977–22987.  https://doi.org/10.1021/acsami.6b05255 CrossRefPubMedGoogle Scholar
  42. Zhao X, Sánchez BM, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855.  https://doi.org/10.1039/c0nr00594k CrossRefPubMedGoogle Scholar
  43. Zheng C, Cao C, Chang R, Hou Z, Zhai H (2016) Hierarchical mesoporous NiCo2O4 hollow nanocubes for supercapacitors. Phys Chem Chem Phys 18:6268–6274.  https://doi.org/10.1039/c5cp07997g CrossRefPubMedGoogle Scholar
  44. Zhou Q, Xing J, Gao Y, Lv X, He Y, GuO Z, Li Y (2014) Ordered assembly of NiCo2O4 multiple hierarchical structures for high-performance pseudocapacitors. ACS Appl Mater Interfaces 6:11394–11402.  https://doi.org/10.1021/am501988s CrossRefPubMedGoogle Scholar
  45. Zhou Y, Mao Z, Wang W, Yang Z, Liu X (2016) In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (Ni-MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials. ACS Appl Mater Interfaces 8:28904–28916.  https://doi.org/10.1021/acsami.6b10640 CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of ChemistryA.V.C. College (Autonomous)MayiladuthuraiIndia

Personalised recommendations