Advertisement

Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition

  • Jaroslav StejskalEmail author
Review
  • 97 Downloads

Abstract

Conducting polymers, such as polyaniline and polypyrrole, have frequently been discussed in the literature due to ease of preparation and high application potential. These polymers have been observed to interact with organic dyes because of the similarity in the conjugated molecular structure of both moieties. The interaction manifests itself in three fundamental directions that have been so far treated separately. The first is represented by the conductivity enhancement and morphology control when using organic dyes as templates in polypyrrole preparation. The adsorption of dyes on conducting polymers is the second field oriented at the water pollution treatment. Finally, the photocatalytic decomposition of organic dyes aims at the similar environmental target. The last two applications do not require the presence of conductivity which, on the other hand, is a key parameter of conducting polymers. The future design of advanced adsorbents, however, has to exploit both the conductivity and electroactivity in the control of pollutant adsorption or degradation. For this reason, all these interactions and their practical impact are considered in the present review.

Keywords

Adsorption Conducting polymer Nanotubes Organic dyes Photocatalytic decomposition Water pollution treatment 

Notes

Acknowledgements

The author thanks the Czech Science Foundation (19-04859S) for the financial support.

References

  1. Abbasian M, Niroomand P, Jaymand M (2017a) Cellulose/polyaniline derivatives nanocomposites: synthesis and their performance in removal of anionic dyes from simulated industrial effluents. J Appl Polym Sci 134:45352.  https://doi.org/10.1002/app.45352 CrossRefGoogle Scholar
  2. Abbasian M, Jaymand M, Niroomand P, Farnoudian-Habibi A, Karaj-Abad SG (2017b) Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents. Int J Biol Macromol 95:393–403.  https://doi.org/10.1016/j.ijbiomac.2016.11.075 CrossRefPubMedGoogle Scholar
  3. Abukhadra MR, Shaban M, Abd El Samad MA (2018a) Enhanced photocatalytic removal of Safranin-T dye under sunlight within minute time intervals using heulandite/polyaniline@nickel oxide composites a novel photocatalyst. Ecotoxicol Environ Safety 162:261–271.  https://doi.org/10.1016/j.ecoenv.2018.06.081 CrossRefPubMedGoogle Scholar
  4. Abukhadra MR, Shaban M, Sayed F, Saad I (2018b) Efficient photocatalytic removal of safranin-O dye pollutants from water under sunlight using synthetic bentonite/polyaniline@Ni2O3 photocatalyst of enhanced properties. Environ Sci Pollut Res 25:33264–33276.  https://doi.org/10.1007/s11356-018-3270-x CrossRefGoogle Scholar
  5. Abukhadra MR, Rabia M, Shaban M, Verpoort F (2018c) Heulandite/polyaniline hybrid composite for efficient removal of acidic dye from water; kinetic, equilibrium studies and statistical optimization. Adv Powder Technol 29:2501–2511.  https://doi.org/10.1016/j.apt.2018.06.030 CrossRefGoogle Scholar
  6. Acharya U, Bober P, Trchová M, Zhigunov A, Stejskal J, Pfleger J (2018) Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite. Polymer 50:130–137.  https://doi.org/10.1016/j.polymer.2018.07.004 CrossRefGoogle Scholar
  7. Agarwal S, Tyagi I, Gupta VK, Golbaz F, Golikand AN, Moradi O (2016) Synthesis and characteristics of polyaniline/zirconium oxide conductive nanocomposite for dye adsorption application. J Mol Liq 218:494–498.  https://doi.org/10.1016/j.molliq.2016.02.040 CrossRefGoogle Scholar
  8. Aghajani K, Tayebi HA (2017) Synthesis of SWBA-15/PAni mesoporous composite for adsorption of reactive dye from aqueous media: RBF and MLP networks predicting models. Fibers Polym 18:465–475.  https://doi.org/10.1007/s12221-017-6610-4 CrossRefGoogle Scholar
  9. Ahmad N, Sultana S, Kumar G, Zuhaib M, Sabir S, Khan MZ (2019) Polyaniline base hybrid bionanocomposites with enhanced visible light photocatalytic activity and antifungal activity. J Environ Chem Eng 7:102804.  https://doi.org/10.1016/j.jece.2018.11.048 CrossRefGoogle Scholar
  10. Ahmed SM, El-Dib FI, El-Gendy NS, Sayed WM, El-Khodary M (2016) A kinetic study for the removal of anionic sulphonated dye from aqueous solution using nano-polyaniline and Baker’s yeast. Arab J Chem 9:S1721–S1728.  https://doi.org/10.1016/j.arabjc.2012.04.049 CrossRefGoogle Scholar
  11. Ai LH, Jiang J, Zhang R (2010) Uniform polyaniline microspheres: a novel adsorbent for dye removal from aqueous solution. Synth Met 160:762–767.  https://doi.org/10.1016/j.synthmet.2010.01.017 CrossRefGoogle Scholar
  12. Aigbe UO, Kchenfouch M, Ho WH, Majty A, Vallabhapurapu VS, Hemmaragala NM (2018) Congo red dye removal under influence of rotating magnetic field by polypyrrole nanocomposite. Desalin Water Treat 131:328–342.  https://doi.org/10.5004/dwt.2018.23028 CrossRefGoogle Scholar
  13. Akhbartabar I, Yazdanshenas ME, Tayebi HA, Nasirizadeh N (2017) Physical chemistry studies of acid dye removal from aqueous media by mesoporous nano composite: adsorption isotherm, kinetic and thermodynamic studies. Phys Chem Res 5:659–679.  https://doi.org/10.22036/pcr.2017.83378.1371 CrossRefGoogle Scholar
  14. Akti F (2018) Photocatalytic degradation of remazol yellow using polyaniline–doped tin oxide hybrid photocatalysts with diatomite support. Appl Surf Sci 455:931–939.  https://doi.org/10.1016/j.apsusc.2018.06.019 CrossRefGoogle Scholar
  15. Akti F, Okur M (2018) The removal of Acid Violet 90 from aqueous solutions using PANI and PANI/clinoptiolite composites: isotherms and kinetics. J Polym Environ 26:4233–4242.  https://doi.org/10.1007/s10924-018-1297-1 CrossRefGoogle Scholar
  16. Alekseeva E, Bober P, Trchová M, Šeděnková I, Prokeš J, Stejskal J (2015) The composites of silver with globular or nanotubular polypyrrole: the control of silver content. Synth Met 209:105–111.  https://doi.org/10.1016/j.synthmet.2015.07.003 CrossRefGoogle Scholar
  17. Ali M, Husain Q, Sultana S, Ahmad M (2018) Immobilization of peroxidase on polypyrrole-cellulose-graphene oxide nanocomposite via non-covalent interactions for the degradation of Reactive Blue 4 dye. Chemosphere 202:198–207.  https://doi.org/10.1016/j.chemosphere.2018.03.073 CrossRefPubMedGoogle Scholar
  18. Aliabad R, Mahmoodi NO (2018) Synthesis characterization of polypyrrole, polyaniline nanoparticles and their nanocomposite for removal of azo dyes: sunset yellow and Congo red. J Clean Prod 179:235–245.  https://doi.org/10.1016/j.jclepro.2018.01.035 CrossRefGoogle Scholar
  19. Alipour A, Lakouarj MM (2019) Photocatalytic degradation of RB dye by the CdS-decorated nanocomposites based on polyaniline and hydrolyzed pectin: isotherm and kinetic. J Environ Chem Eng 7:102837.  https://doi.org/10.1016/j.jece.2018.102837 CrossRefGoogle Scholar
  20. Allahveran S, Mehrizad A (2017) Polyaniline/ZnS nanocomposite as a novel photocatalyst for removal of Rhodamine 6G from aqueous media: optimization of influential parameters by response surface methodology and kinetic modeling. J Mol Liq 225:339–346.  https://doi.org/10.1016/j.molliq.2016.11.051 CrossRefGoogle Scholar
  21. Almeida AKA, Dias JMM, Santos DP, Nogueira FAR, Navarro M, Tonholo J, Lima DJP, Ribeiro AS (2017) A magenta polypyrrole derivatised with Methyl Red azo dye: synthesis and spectroelectrochermical characterization. Electrochim Acta 240:239–249.  https://doi.org/10.1016/j.electacta.2017.04.068 CrossRefGoogle Scholar
  22. Ameen S, Seo SK, Akhtar MS, Shin HS (2012) Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chem Eng J 210:220–228.  https://doi.org/10.1016/j.cej.2012.08.035 CrossRefGoogle Scholar
  23. Amer WA, Omran MM, Rehab AF, Ayad MM (2018) Acid green crystal-based in situ synthesis of polyaniline hollow nanotubes for the adsorption of anionic and cationic dyes. RSC Adv 8:22536–22545.  https://doi.org/10.1039/c8ra02236d CrossRefGoogle Scholar
  24. Amer WA, Omran MM, Ayad MM (2019a) Acid-free synthesis of polyaniline nanotubes for dual removal of organic dyes from aqueous solutions. Colloid Surf A-Physicochem Eng Asp 562:203–212.  https://doi.org/10.1016/j.colsurfa.2018.10.081 CrossRefGoogle Scholar
  25. Amer WA, Al-saida B, Ayad MM (2019b) Rational design of a polypyrrole-based competent bifunctional magnetic nanocatalyst. RSC Adv 9:18245.  https://doi.org/10.1039/c9ra02544h CrossRefGoogle Scholar
  26. An L, Xu Y, Xu ZH, Chen LL, Yang ZH, Wang GH (2018) Coral-like polyaniline/TiO2 porous micro-composite material: facile preparation, characterization, and enhanced visible-light photocatalytic activity. Phys Chem Nanoclust Nanomater 92:2265–2269.  https://doi.org/10.1134/s00360244118110201 CrossRefGoogle Scholar
  27. Ansari R, Mosayebzadeh Z (2011) Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chem Pap 65:1–8.  https://doi.org/10.2478/s11696-010-0083 CrossRefGoogle Scholar
  28. Ansari R, Alaie S, Mohammad-Khan A (2011) Application of polyaniline for removal of Acid Green 25 from aqueous solutions. J Sci Ind Res 70:804–809.Google Scholar
  29. Ansari MO, Khan MM, Ansari SA, Cho MH (2015) Electrically conductive polyaniline sensitized defective-TiO2 for improved visible light photocatalytic and photoelectrochemical performance: a synergistic effect. New J Chem 39:8381–8388.  https://doi.org/10.1039/c5nj01127b CrossRefGoogle Scholar
  30. Ansari MO, Kumar R, Ansari SA, Ansari SP, Barakat MA, Alshahries A, Cho MH (2017) Anion selective pTSA doped polyaniline@graphene oxide-multiwalled carbon nanotube composite for Cr(VI) and Congo red adsorption. J Colloid Interface Sci 496:407–415.  https://doi.org/10.1016/j.jcis.2017.02.034 CrossRefPubMedGoogle Scholar
  31. Archana S, Malarvizhi M, Muthirulan P, Sundaram MM (2016) Superior photocatalytic and antibacterial activities of conducting caramic TiO2@poly(o-phenylenediamine) core–shell nanocomposites. J Mater Sci-Mater Electron 27:12691–12700.  https://doi.org/10.1007/s10854-016-5403-7 CrossRefGoogle Scholar
  32. Arshadnia I, Movahedi M, Rasouli N (2017) MgFe2O4 and MgFe2O4/ZnFe2O4 coated with polyaniline as a magnetically separable photocatalyst for removal of a two dye mixture in aqueous solution. Res Chem Intermed 43:4459–4474.  https://doi.org/10.1007/s11164-017-2889-4 CrossRefGoogle Scholar
  33. Asgari E, Esrafili A, Jafari AJ, Kalantary RR, Farzadkia M (2019) Synthesis of TiO2/polyaniline photocatalytic nanocomposite and its effects on degradation of metronidazole in aqueous solutions under UV and visible light radiation. Desalin Water Treat 161:228–242.  https://doi.org/10.5004/dwt.2019.24291 CrossRefGoogle Scholar
  34. Ates M (2016) Biomedical application of electroactive polymers in electrochemical sensors: a review. J Adhes Sci Techol 30:1510–1536.  https://doi.org/10.1080/01694243.2016.1150662 CrossRefGoogle Scholar
  35. Ayad MM, Abu El-Nasr A (2010) Adsorption of cationic dye (methylene blue) from water using polyaniline nanotubes base. J Phys Chem C 114:14377–14383.  https://doi.org/10.1021/jp103780w CrossRefGoogle Scholar
  36. Ayad M, Zaghlol S (2012) Nanostructured crosslinked polyaniline with high surface area: synthesis, characterization and adsorption of organic dye. Chem Eng J 204–206:79–86.  https://doi.org/10.1016/j.cej.2012.07.102 CrossRefGoogle Scholar
  37. Ayad MM, Abu El-Nasr A, Stejskal J (2012) Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite. J Ind Eng Chem 18:1964–1969.  https://doi.org/10.1016/j.jiec.2012.05.012 CrossRefGoogle Scholar
  38. Ayad M, El-Hefnawy G, Zaghlol S (2013) Facile synthesis of polyaniline nanoparticles: its adsorption behavior. Chem Eng J 217:460–465.  https://doi.org/10.1016/j.cej.2012.11.099 CrossRefGoogle Scholar
  39. Ayad MM, Amer WA, Kotp MG (2017) Magnetic polyaniline-chitosan composites decorated with palladium nanoparticles for enhanced catalytic reduction of 4-nitrophenol. Mol Catal 439:72–80.  https://doi.org/10.1016/j.mcat.2017.06.023 CrossRefGoogle Scholar
  40. Ayad MM, Amer WA, Zaghlol S, Minisy IM, Bober P, Stejskal J (2018a) Polypyrrole-coated cotton textile as adsorbent of methylene blue dye. Chem Pap 72:1605–1618.  https://doi.org/10.1007/s11696-018-0442-6 CrossRefGoogle Scholar
  41. Ayad MM, Amer WA, Saghlol S, Maráková N, Stejskal J (2018b) Polypyrrole-coated cotton fabric decorated with silver nanoparticles for the catalytic removal of p-nitrophenol from water. Cellulose 25:7393–7404.  https://doi.org/10.1007/s10570-018-2088-5 CrossRefGoogle Scholar
  42. Babayan V, Kazantseva NE, Moučka R, Stejskal J (2017) Electromagnetic shielding of polypyrrole–sawdust composites: polypyrrole globules and nanotubes. Cellulose 24:3445–3451.  https://doi.org/10.1007/s10570-017-1357-z CrossRefGoogle Scholar
  43. Bagheri M, Mardani E (2019) Removal of Acid Orange 7 dye from aqueous solutions using polyaniline-modified rice bran: isotherms, kinetics, and thermodynamics. Environ Health Eng Manage J 6:203–213.  https://doi.org/10.15171/ehem.2019.23 CrossRefGoogle Scholar
  44. Bahrudin NN, Nawi MA, Ismail WINW (2018a) Physical and adsorptive characterization of immobilized polyaniline for the removal of methyl orange dye. Korean J Chem Eng 35:1450–1461.  https://doi.org/10.1007/s1814-018-0052-6 CrossRefGoogle Scholar
  45. Bahrudin NN, Nawi MA, Nawawi WI (2018b) Photocatalytic enhancement of immobilized TiO2-polyaniline bilayer (TiO2-PBL) system for decolorization of methyl orange dye. Mater Res Bull 106:388–395.  https://doi.org/10.1016/j.matresbull.2018.06.023 CrossRefGoogle Scholar
  46. Bahrudin NN, Nawi MA, Nawawi WI (2019) Enhanced photocatalytic decolorization of methyl orange dye and its mineralization pathway by immobilized TiO2/polyaniline. Res Chem Intermed 45:2771–2795.  https://doi.org/10.1007/s11164-019-03762-y CrossRefGoogle Scholar
  47. Bai LZ, Li ZP, Zhang Y, Wang T, Lu RH, Zhou WF, Gao HX, Zhang SB (2015) Synthesis of water-dispersible graphene-modified magnetic polypyrrole nanocomposite and its ability to efficiently adsorb methylene blue from aqueous solution. Chem Eng J 279:757–766.  https://doi.org/10.1016/j.cej.2015.05.068 CrossRefGoogle Scholar
  48. Bai MD, Wang XL, Li BM (2018) Capacitative behavior and material characteristics of congo red doped poly(3,4-ethylene dioxythiophene). Electrochim Acta 283:590–596.  https://doi.org/10.1016/j.electacta.2018.07.004 CrossRefGoogle Scholar
  49. Baker CO, Huang XW, Nelson W, Kaner RB (2017) Polyaniline nanofibers: broadening applications for conducting polymers. Chem Soc Rev 46:1510–1525.  https://doi.org/10.1039/c6cs00555a CrossRefPubMedGoogle Scholar
  50. Ballav N, Debnath S, Pillay K, Maity A (2015) Efficient removal of Reactive Black from aqueous solution using polyaniline coated ligno-cellulose as a potential adsorbent. J Mol Liq 209:387–396.  https://doi.org/10.1016/j.molliq.2015.05.051 CrossRefGoogle Scholar
  51. Bartel M, Wysocka B, Krug P, Kepińska D, Kijewska K, Blanchard GJ, Kaczynska K, Lubelska K, Wiktorska K, Głowala P, Wilczak M, Pisarek M, Twardowski A, Mazur M (2018) Magnetic polymer microcapsules loaded with Nile Red fluorescent. Spectrochim Acta A, Molec Biomolec Spectrosc 195:148–156.  https://doi.org/10.1016/j.saa.2018.01.056 CrossRefGoogle Scholar
  52. Baseri JR, Palanisamy PN, Sivakumar P (2013) Polyaniline nano composite for the adsorption of reactive dye from aqueous solutions: equilibrium and kinetic studies. Asian J Chem 25:4145–4149.  https://doi.org/10.14233/ajchem.2013.12685 CrossRefGoogle Scholar
  53. Bashir A, Hanif F, Yasmeen G, Mabood F, Hussain A, Abbas N, Bin Yousaf A, Aamir M, Manzoor S (2019) Polyaniline based magnesium nanoferrite composites as efficient photocatalysts for the photodegradation of Indigo Carmine in aqueous solutions. Desalin Water Treat 164:268–377.  https://doi.org/10.5004/dwt.2019.24394 CrossRefGoogle Scholar
  54. Beyki MH, Alijani H, Fazli Y (2016) Poly o-phenylenediamine-MgAl@CaFe2O4 nanohybrid for effective removing of lead(II), chromium(III) and anionic azo dye. Process Saf Environ Protect 102:687–699.  https://doi.org/10.1016/j.psep.2016.04.027 CrossRefGoogle Scholar
  55. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810.  https://doi.org/10.1016/j.progpolymsci.2009.04.003 CrossRefGoogle Scholar
  56. Bhaumik M, McCrindle R, Maity A (2013) Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole-polyaniline nanofibres. Chem Eng J 228:506–515.  https://doi.org/10.1016/j.cej.2013.05.026 CrossRefGoogle Scholar
  57. Bhaumik M, Choi HJ, McCrindle RI, Maity A (2014) Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications. J Colloid Interface Sci 425:75–82.  https://doi.org/10.1016/j.jcis.201403.031 CrossRefPubMedGoogle Scholar
  58. Bhaumik M, McCrindle RI, Maity A (2015) Enhanced adsorptive degradation of Congo red in aqueous solutions using polyaniline/Fe0 composite nanofibers. Chem Eng J 260:716–729.  https://doi.org/10.1016/j.cej.2014.09.014 CrossRefGoogle Scholar
  59. Bhaumik M, McCrindle RI, Maity A, Agarwal S, Gupta VK (2016) Polyaniline nanofibers as highly effective re-usable adsorbent for removal of reactive black5 from aqueous solutions. J Colloid Interface Sci 466:442–451.  https://doi.org/10.1016/j.jcis.2015.12.056 CrossRefPubMedGoogle Scholar
  60. Bhowmik KL, Deb K, Bera A, Debnath A, Saha B (2018) Interaction of anionic dyes with polyaniline implanted cellulose: organic π-conjugated macromolecules in environmental applications. J Mol Liq 261:189–198.  https://doi.org/10.1016/j.molliq.2018.03.128 CrossRefGoogle Scholar
  61. Binaeian E, Tayebi HA, Rad AS, Afrashteh S (2018) Adsorption of acid blue on synthesized polymeric nanocomposites, PPy/MCM-41 and PAni/MCM-41: isotherm, thermodynamic and kinetic studies. J Macromol Sci Part A Pure Appl Chem 55:269–279.  https://doi.org/10.1080/10601325.2018.1424554 CrossRefGoogle Scholar
  62. Bingöl D, Veli S, Zor S, Özdemir U (2012) Analysis of adsorption of reactive azo dyes onto CuCl2 doped polyaniline using Box-Behnken design approach. Synth Met 162:1566–1571.  https://doi.org/10.1016/j.synthmet.2012.07.011 CrossRefGoogle Scholar
  63. Biswas MRUD, Cho KY, Jung CH, Oh WC (2019) Novel synthesis of LaNiSbWO4-G-PANI designed as quaternary type composite for high photocatalytic performance of anionic dye and trihydroxy benzoic acid under visible-light. Process Saf Environ Protect 126:348–355.  https://doi.org/10.1016/j,psep.2019.04.022 CrossRefGoogle Scholar
  64. Bober P, Stejskal J, Šeděnková I, Trchová M, Martinková L, Marek J (2015) The deposition of globular polypyrrole and polypyrrole nanotubes on cotton textile. Appl Surf Sci 356:737–741.  https://doi.org/10.1016/j.apsusc.2015.08.105 CrossRefGoogle Scholar
  65. Bober P, Li Y, Acharya U, Panthi Y, Pfleger J, Humpolíček P, Trchová M, Stejskal J (2018a) Acid Blue dyes in polypyrrole synthesis: the control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. Synth Met 237:40–49.  https://doi.org/10.1016/j.synthmet.2018.01.010 CrossRefGoogle Scholar
  66. Bober P, Trchová M, Kovářová J, Acharya U, Hromádková J, Stejskal J (2018b) Reduction of silver ions to silver with polyaniline/poly(vinyl alcohol) cryogels and aerogels. Chem Pap 72:1619–1628.  https://doi.org/10.1007/s11696-017-0374-6 CrossRefGoogle Scholar
  67. Bonfin CS, Franco JH, de Andrade AR (2019) Ethanol bioelectrooxidation in robust poly(methylene green-pyrrole)-mediated enzymatic biofuel cell. J Electroanal Chem 844:43–48.  https://doi.org/10.1016/j.jelechem.2019.04.075 CrossRefGoogle Scholar
  68. Boukoussa B, Hakiki A, Moulai S, Chikh S, Kherroub DE, Bouhajdar I, Guedal D, Messaoudi K, Mokhtar F, Hamacha R (2018) Adsorption behaviours of cationic and anionic dyes from aqueous solution on nanocomposite polypyrrole/SBA-15. J Mater Sci 53:7372–7386.  https://doi.org/10.1007/s10853-018-2060-7 CrossRefGoogle Scholar
  69. Broncová G, Shishkanova TV, Matějka P, Volf R, Král V (2004) Citrate selectivity of poly(neutral red) electropolymerized films. Anal Chim Acta 511:197–205.  https://doi.org/10.1016/j.aca.2004.01.052 CrossRefGoogle Scholar
  70. Broncová G, Shishkanova TV, Kronďák M, Volf R, Král V (2008) Optimalization of poly(neutral red) coated-wire electrode for determination of citrate in soft drinks. Sensors 8:594–606.  https://doi.org/10.3390/s8020594 CrossRefPubMedGoogle Scholar
  71. Broncová G, Shishkanova TV, Matějka P, Kubáč D, Král V (2016) Poly(neutral red) in multilayer electrode systems. Chem Listy 110:800–807.Google Scholar
  72. Canoluk C, Gursoy SS (2017) Chemical modification of rose leaf with polypyrrole for the removal of Pb(II) and Cd(II) from aqueous solution. J Macromol Sci A: Pure Appl Chem 54:782–790.  https://doi.org/10.1080/10601325.2017.1336722 CrossRefGoogle Scholar
  73. Carević MV, Abazović ND, Mitrić MN, Ćirić-Marjanović G, Mojović MD, Ahrenkiel SP, Comor MI (2018) Properties of zirconia/polyaniline hybrid nanocomposites and their application as photocatalysts for degradation of model pollutants. Mater Chem Phys 205:130–137.  https://doi.org/10.1016/j.matchemphys.2017.11.016 CrossRefGoogle Scholar
  74. Castillo-Reyes BE, Ovando-Medina VM, Gonzáles-Ortega O, Alonso-Dávila PA, Juaréz-Ramírez I, Martinez-Gutiérrez H, Marquez-Herrera A (2015) TiO2/polypyrrole nanocomposites photoactive under visible light synthesized by heterophase polymerization in the presence of different surfactants. Res Chem Intermed 41:8211–8231.  https://doi.org/10.1007/s11164-014-1886-0 CrossRefGoogle Scholar
  75. Chafai H, Laabd M, Elbariji S, Bazzaoui M, Albourine A (2017a) Study of congo red adsorption on the polyaniline and polypyrrole. J Disp Sci Technol 38:832–836.  https://doi.org/10.1080/01932691.2016.1207185 CrossRefGoogle Scholar
  76. Chafai H, Laabd M, Elamine M, Albourine A (2017b) Chemical synthesis and characterization of polyaniline: water depollution efficiency and effectiveness. Desalin Water Treat 83:314–320.  https://doi.org/10.5004/dwt.2017.21194 CrossRefGoogle Scholar
  77. Chani MTS, Karimov KS, Khalid FA, Abbas SZ, Bhatty MB (2013) Orange dye–polyaniline composite based impedance humidity sensors. Chin Phys B 22:010701.  https://doi.org/10.1088/1674-1056/22/1/010701 CrossRefGoogle Scholar
  78. Chatterjee MJ, Ahamed ST, Mitra M, Kǀulsi C, Mondal A, Banerjee D (2019) Visible-light influenced photocatalytic activity of polyaniline-bismuth selenide composites for the degradation of methyl orange, rhodamine B and malachite green dyes. Appl Surf Sci 470:472–483.  https://doi.org/10.1016/j.apsusc.2018.11.085 CrossRefGoogle Scholar
  79. Che XT, Trieu QVV, Tran TQ, Pham TD, VuTQ Tran TH, Mai TA (2018) Possible monitoring and removal of As(III) by an integrated system of electrochemical sensor and nanocomposite materials. J Nanomater 2018:9250463.  https://doi.org/10.1155/2018/9250463 CrossRefGoogle Scholar
  80. Chen S, Zhitomirsky I (2013) Influence of dopants and carbon nanotubes on polypyrrole electropolymerization and capacitive behavior. Mater Lett 98:67–70.  https://doi.org/10.1016/j.matlet.2013.01.123 CrossRefGoogle Scholar
  81. Chen J, Feng JT, Yan W (2016) Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for methylene blue. J Colloid Interface Sci 475:26–35.  https://doi.org/10.1016/j.jcis.2016.04.017 CrossRefPubMedGoogle Scholar
  82. Chen XF, Huang Y, Zhang KC, Feng XS, Wang MY (2017a) Synthesis and high-performance of carbonaceous polypyrrole nanotubes coated with SnS2 nanosheets anode materials for lithium ion batteries. Chem Eng J 330:470–479.  https://doi.org/10.1016/j.cej.2017.07.180 CrossRefGoogle Scholar
  83. Chen J, Shu CJ, Wang N, Feng JT, Ma HY, Yan W (2017b) Adsorbent synthesis of polypyrrole/TiO2 for effective fluoride removal from aqueous solution for drinking water purification: adsorbent characterization and adsorption mechanism. J Colloid Interface Sci 495:44–52.  https://doi.org/10.1016/j.jcis.2017.01.044 CrossRefPubMedGoogle Scholar
  84. Chen Y, Lin ZH, Hao RR, Xu H, Huang CY (2019a) Rapid adsorption and reductive degradation of Naphthol Green B from aqueous solution by Polypyrrole/Attapulgite composites supported nanoscale zero-valent iron. J Hazard Mater 371:8–17.  https://doi.org/10.1016/j.jhazmat.2019.02.096 CrossRefPubMedGoogle Scholar
  85. Chen Y, Xu H, Long WC (2019b) Efficient removal of Acid Red 18 from aqueous solution by in situ polymerization of polypyrrole-chitosan composites. J Mol Liq 287:110888.  https://doi.org/10.1016/j.molliq.2019.110888 CrossRefGoogle Scholar
  86. Chen YJ, Zhu PF, Duan M, Li J, Ren ZH, Wang PP (2019c) Fabrication of a magnetically separable and dual Z-scheme PANI/Ag3PO4/NiFe2O4 composite with enhanced visible-light photocatalytic activity for organic pollutant elimination. Appl Surf Sci 486:198–211.  https://doi.org/10.1016/j.apsusc.2019.04.232 CrossRefGoogle Scholar
  87. Chigondo M, Paumo HK, Bhaumik M, Pillay K, Maity A (2019) Magnetic arginine-functionalized polypyrrole with improved and selective chromium(VI) ions removal from water. J Mol Liq 275:778–791.  https://doi.org/10.1016/j.molliq.2018.11.032 CrossRefGoogle Scholar
  88. Chiou NR, Epstein AJ (2005) Polyaniline nanofibers prepared by dilute polymerization. Adv Mater 13:1679–1683.  https://doi.org/10.1002/adma.200401000 CrossRefGoogle Scholar
  89. Chiwunze TE, Palakollu VN, Gill AAS, Kayamba F, Thapliyal NB, Karpoormath R (2019) A highly dispersed multi-walled carbon nanotubes and poly(methyl orange) based electrochemical sensor for the determination of an anti-malarial drug: amodiaquine. Mater Sci Eng C 97:285–292.  https://doi.org/10.1016/j.msec.2018.112.018 CrossRefGoogle Scholar
  90. Ćirić-Marjanović G, Blinova NV, Trchová M, Stejskal J (2007) Chemical oxidative polymerization of safranines. J Phys Chem B 111:2188–2199.  https://doi.org/10.1021/jp067407w CrossRefPubMedGoogle Scholar
  91. Ćirić-Marjanović G, Pašti I, Gavrilov N, Janosević A, Mentus S (2013) Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials. Chem Pap 67:781–813.  https://doi.org/10.2478/s11696-013-0312-1 CrossRefGoogle Scholar
  92. Ćirić-Marjanović G, Mentus S, Pašti I, Gavrilov N, Krstić J, Travas-Sejdic J, Strover LT, Kopecká J, Morávková Z, Trchová M, Stejskal J (2014) Synthesis, characterization, and electrochemistry of nanotubular polypyrrole and polypyrrole-derived carbon nanotubes. J Phys Chem C 118:14770–14784.  https://doi.org/10.1021/jp502862d CrossRefGoogle Scholar
  93. Collings PJ, Dickinson AJ, Smith EC (2010) Molecular aggregation and chromonic liquid crystals. Liq Cryst 37:701–710.  https://doi.org/10.1080/02678292.2010.481910 CrossRefGoogle Scholar
  94. Curran SA, Ellis AV, Vijayaraghavan A, Ajayan PM (2004) Functionalization of carbon nanotubes using phenosafranin. J Chem Phys 120:4886–4889.  https://doi.org/10.1063/1.1644109 CrossRefPubMedGoogle Scholar
  95. Czaja T, Wójcik K, Grzeszczuk M, Szostak R (2019) Polypyrrole–methyl orange Raman pH sensor. Polymers 11:715.  https://doi.org/10.3390/polym11040715 CrossRefPubMedCentralGoogle Scholar
  96. Das R, Bhaumik M, Giri S, Maity A (2017) Sonocatalytic rapid degradation of Congo red dye from aqueous solution using magnetic Fe0/polyaniline nanofibers. Untrason Sonochem 37:600–613.  https://doi.org/10.1016/j.ultsonch.2017.02.022 CrossRefGoogle Scholar
  97. de Lazzari AC, Soares DP, Sampaio NMFM, Silva BJG, Vidotti M (2019) Polypyrrole nanotubes for electrochemically controlled extraction pf atrazine, caffeine and progesterone. Microchim Acta 186:398.  https://doi.org/10.1007/s00604-019-3545-z CrossRefGoogle Scholar
  98. Debnath S, Ballav N, Maity A, Pillay K (2015a) Development of polyaniline-lignocellulose composite for optimal adsorption of Congo red. Int J Biol Macromol 75:199–209.  https://doi.org/10.1016/j.ijbiomac.2015.01.011 CrossRefPubMedGoogle Scholar
  99. Debnath S, Ballav N, Maity A, Pillay K (2015b) Single stage batch adsorber design for efficient Eosin yellow removal by polyaniline coated ligno-cellulose. Int J Biol Macromol 72:732–739.  https://doi.org/10.1016/j.ijbiomac.2014.09.018 CrossRefPubMedGoogle Scholar
  100. Debnath S, Ballav N, Nyoni H, Maity A, Pillay K (2015c) Optimization and mechanism elucidation of the catalytic photodegradation of the dyes Eosin Yellow (EY) and Naphtol blue black by a polyaniline-coated titanium dioxide. Appl Cat B-Environ 163:330–342.  https://doi.org/10.1016/j.apcatb.2014.08.011 CrossRefGoogle Scholar
  101. Deng YC, Tang L, Zeng GM, Dong HR, Yan M, Wang JJ, Hu W, Wang JJ, Zhou YY, Tang J (2017) Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere. Appl Surf Sci 387:882–893.  https://doi.org/10.1016/j.apsusc.2016.07.026 CrossRefGoogle Scholar
  102. Dhanavel S, Nivethaa EAK, Dhanapal K, Gupta VK, Narayanan V, Stephen A (2016) α-MoO3/polyaniline composite for effective scavenging of Rhodamine B, Congo red and textile dye effluent. RSC Adv 6:28871–28886.  https://doi.org/10.1039/c6ra02576e CrossRefGoogle Scholar
  103. Diaz-Flores PE, Guzmán-Alváreez CJ, Ovando-Medina VM, Martínez-Gutiérrez H, González-Ortega O (2019) Synthesis of α-cellulose/magnetite/polypyrrole composite for the removal of reactive black 5 dye from aqueous solutions. Desalin Water Treat 155:350–363.  https://doi.org/10.5004/dwt.2019.24013 CrossRefGoogle Scholar
  104. Ding XD, Wang W, Zhang A, Zhang LS (2019) Efficient visible light degradation of dyes in wastewater by nickel–phosphorus plating–titanium dioxide complex electroless plating fabric. J Mater Res 34:999–1010.  https://doi.org/10.1557/jmr.2019.16 CrossRefGoogle Scholar
  105. Dong JJ, Lin Y, Zong HW, Yang HB (2019a) Hierarchical LiFe5O8@PPy core-shell nanocomposites as electrode materials for supercapacitors. Appl Surf Sci 470:1043–1052.  https://doi.org/10.1016/j.apsusc.2018.11.204 CrossRefGoogle Scholar
  106. Dong YY, Ma Y, Bai RQ, Zhang Q, Han YQ, Zhong SJ, Zhao YQ, Han L, Li TX (2019b) Exploring the effects of acid fuchsin on microscopic morphology and properties of polypyrrole. J Photopolym Sci Technol 32:51–56CrossRefGoogle Scholar
  107. Duan WZ, Li MH, Xiao WL, Wang NF, Niu BH, Zhou L (2019) Enhanced adsorption of three fluoroquinolone antibiotics using polypyrrole functionalized Calotropis gigantea fiber. Colloid Surf A-Physicochem Eng Asp 574:178–187.  https://doi.org/10.1016/j.colsurfa.2019.04.068 CrossRefGoogle Scholar
  108. Dubal D, Jagadale A, Chodankar NR, Kim DH, Gomez-Romero P, Holze R (2019) Polypyrrole nanopipes as a promising cathode material for Li-ion batteries and Li-ion capacitors: two-in-one approach. Energy Technol 7:193–200.  https://doi.org/10.1002/ente.201800551 CrossRefGoogle Scholar
  109. Duhan M, Kaur R (2019) Adsorptive removal of methyl orange with polyaniline nanofibers: an unconventional adsorbent for water treatment. Environ Technol.  https://doi.org/10.1080/09593330.2019.1593511 CrossRefPubMedGoogle Scholar
  110. Dutta K, De S (2017) Aromatic conjugated polymers for removal of heavy metal ions from wastewater: a short review. Environ Sci Water Res Technol 3:793–805.  https://doi.org/10.1039/c7ew00154a CrossRefGoogle Scholar
  111. Dutta K, Rana D (2019) Polythiophenes: an emerging class of promising water purifying materials. Eur Polym J 116:370–385.  https://doi.org/10.1016/j.eurpolymj.2019.04.033 CrossRefGoogle Scholar
  112. Elsayed MA, Gobara M (2016) Enhancement removal of tartrazine dye using HCl-doped polyaniline and TiO2-decorated PANI particles. Mater Res Express 3:085301.  https://doi.org/10.1088/2053-1591/3/8/085301 CrossRefGoogle Scholar
  113. Erdoğan MK, Karakışla M, Saçak M (2019) Morphologically different silver particles decorated conductive poly(o-anisidine)/wool fabric composites and investigation of catalytic activity in reduction of methylene blue. Mater Chem Phys 225:72–83.  https://doi.org/10.1016/j.matchemphys.2018.12.021 CrossRefGoogle Scholar
  114. Eslami MR, Alizadeh N (2019) Ultrasensitive and selective QCM sensor for detection of trace amounts of nitroexplosive vapors in ambient air based on polypyrrole–Bromophenol blue nanostruture. Sens Actuator B: Chem 278:55–63.  https://doi.org/10.1016/j.snb.2018.09.060 CrossRefGoogle Scholar
  115. Faisal M, Harraz FA, Ismail AA, Alsaiari MA, Al-Sayari SA (2019) Novel synthesis of polyaniline/SrSnO3 nanocomposites with enhanced photocatalytic activity. Ceram Int 45:20484–20492.  https://doi.org/10.1016/j.ceramint.2019.07.027 CrossRefGoogle Scholar
  116. Fan LL, Wei CZ, Xu Q, Xu J (2017) Polypyrrole-coated cotton fabrics used for removal of methylene blue from aqueous solution. J Textile Inst 108:1847–1852.  https://doi.org/10.1080/00405000.2017.1296989 CrossRefGoogle Scholar
  117. Fedorova S, Stejskal J (2002) Surface and precipitation polymerization of aniline. Langmuir 18:5630–5632.  https://doi.org/10.1021/la025665o CrossRefGoogle Scholar
  118. Feizpoor S, Habibi-Yangjeh A, Yubuta K (2018) Integration of carbon dots and polyaniline with TiO2 nanoparticles: substantially enhanced photocatalytic activity to removal various pollutants under visible light. J Photochem Photobiol A-Chem 367:94–104.  https://doi.org/10.1016/j.jphotochem.2018.08.017 CrossRefGoogle Scholar
  119. Feng JT, Yan W, Zhang LZ (2009) Synthesis of polypyrrole micro/nanofibers via a self-assembly process. Microchim Acta 166:261–267.  https://doi.org/10.1007/s00604-009-0188-5 CrossRefGoogle Scholar
  120. Feng JT, Li JJ, Lv W, Xu H, Yang HH, Yan W (2014) Synthesis of polypyrrole nano-fibers with hierarchical structure and its adsorption property of Acid Red G from aqueous solution. Synth Met 191:66–73.  https://doi.org/10.1016/j.synthmet.2014.02.013 CrossRefGoogle Scholar
  121. Feng JT, Sun N, Wu DY, Yang HH, Xu H (2017) Preparation of Fe3O4/TiO2/polypyrrole ternary magnetic composite and using as adsorbent for the removal of Acid Red G. J Polym Environ 25:781–791.  https://doi.org/10.1007/s10924-016-0839-7 CrossRefGoogle Scholar
  122. Feng TT, Yin H, Jiang H, Chai X, Li XL, Li DY, Wu J, Liu XH, Sun B (2019) Design and fabrication of polyaniline/Bi2MoO6 nanocomposites for enhanced visible-light-driven photocatalysis. New J Chem 43:9606–9613.  https://doi.org/10.1039/c9nj01651a CrossRefGoogle Scholar
  123. Galář P, Khun J, Kopecký D, Scholtz V, Trchová M, Fučíková A, Jirešová J, Fišer L (2017) Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension. Sci Rep 7:15068.  https://doi.org/10.1038/s41598-017-15184-0 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Gamal H, Attia NF (2019) Facile synthesis of textile-based filter for industrial wastewater treatment. Egypt J Chem 62:1419–1426.  https://doi.org/10.21608/ejchem.2019.6638.1558 CrossRefGoogle Scholar
  125. Gao HJ, Cai MH, Liao YW (2019) Enhance photocatalytic properties of TiO2 using π–π* conjugate system. J Disp Sci Technol 40:1469–1478.  https://doi.org/10.1080/01932691.2018.1518143 CrossRefGoogle Scholar
  126. Garcia-Fernandez MJ, Sancho-Querol S, Pastor-Bias MM, Sepulveda-Eascribano A (2017) Surfactant-assisted synthesis of conducting polymers. Application to the removal of nitrates from water. J Colloid Interface Sci 494:98–106.  https://doi.org/10.1016/j.jcis.2017.01.081 CrossRefPubMedGoogle Scholar
  127. Geetha A, Palanisamy N (2016) Studies oh adsorptive removal of Direct Green 6 using a non-conventional activated carbon and polypyrrole composite. Desalin Water Treat 57:20534–20543.  https://doi.org/10.1080/19443994.2015.1107505 CrossRefGoogle Scholar
  128. Gemeay AHJ, El-sharkawy RG, Mansour IA, Zaki AB (2012) Application of polyaniline/manganese dioxide composites for degradation of acid blue 25 by hydrogen peroxide in aqueous media. Bull Mater Sci 35:585–593.  https://doi.org/10.1007/s12034-012-0328-0 CrossRefGoogle Scholar
  129. Ghaemi N, Safari P (2018) Nanoporous SAPO-34 enhanced thin-film nanocomposite polymeric membrane: simultaneously high water permeation and complete removal of cationic/anionic dyes from water. J Hazard Mater 358:376–388.  https://doi.org/10.1016/j.jhazmat.2018.07.017 CrossRefPubMedGoogle Scholar
  130. Ghahramani A, Gheibi M, Eftekhari M (2019) Polyaniline-coated reduced graphene oxide as an efficient adsorbent for the removal of malachite green from water samples. Polym Bull 76:5269–5283.  https://doi.org/10.1007/s00289-018-2651-0 CrossRefGoogle Scholar
  131. Gholivand MB, Yamini Y, Dayeni M, Seidi S (2015) Adsorptive removal of alizarin red-S and alizarin yellow GG from aqueous solutions using polypyrrole-coated magnetic nanoparticles. J Environ Chem Eng 3:529–540.  https://doi.org/10.1016/j.jece.2015.01.011 CrossRefGoogle Scholar
  132. Gilja V, Novaković K, Travas-Sejdic J, Hrnjak-Mirgić Z, Roković MK, Zić M (2017) Stability and synergistic effect of polyaniline/TiO2 photocatalysts in degradation of azo dye in wastewater. Nanomaterials 7:412.  https://doi.org/10.3390/nano7120412 CrossRefPubMedCentralGoogle Scholar
  133. Gilja V, Vrban I, Mandić V, Žic M, Hrnjak-Murgić Z (2018) Preparation of PANI/ZnO composite for efficient photocatalytic degradation of Acid Blue. Polymers 10:940.  https://doi.org/10.3390/polym10090940 CrossRefPubMedCentralGoogle Scholar
  134. Girotto EM, Gazotti WA, Tormena CF, De Paoli MA (2002) Photoelectronic and transport properties of polypyrrole doped with dianionic dye. Electrochim Acta 47:1351–1357.  https://doi.org/10.1016/s0013-4686%5b01%5d00857-x CrossRefGoogle Scholar
  135. González-Casamachin DA, De la Rosa JR, Lucio-Ortiz CJ, De Haro De Rio DA, Martínez-Vargas DX, Flores-Escamilla GA, Guzman NED, Ovando-Medina VM, Moctezuma-Velazquez E (2019) Visible-light photocatalytic degradation of acid violet 7 dye in a continuous annular reactor using ZnO/PPy photocatalyst: synthesis, characterization, mass transfer effect evaluation and kinetic analysis. Chem Eng J 373:325–337.  https://doi.org/10.1016/j.cej.2019.09.032 CrossRefGoogle Scholar
  136. Gopal N, Asaithambi M, Sivakumar P, Sivakumar V (2014) Adsorption studies of a direct dye using polyaniline coated activated carbon prepared from Prosopis juliflora. J Water Process Eng 2:87–95.  https://doi.org/10.1016/j.jwpe.2014.05.008 CrossRefGoogle Scholar
  137. Gopal N, Asaithambi M, Sivakumar P (2016) Continuous fixed bed adsorption studies of Rhodamine-B dye using polymer bound adsorbent. Ind J Chem Technol 23:53–58.Google Scholar
  138. Gorza FDS, Pedro GC, da Silva RJ, Medina Llamas JC, Alcaraz-Espinoza JJ, Chavez-Guajardo AE, de Meloa CP (2018) Electrospun polystyrene-(emeraldine base) mats as high-performance materials for dye removal from aqueous media. J Taiwan Inst Chem Eng 82:300–311.  https://doi.org/10.1016/j.jtice.2017.10.034 CrossRefGoogle Scholar
  139. Gospodinova N, Tomšík E (2015) Hydrogen-bonding versus π–π stacking in the design of organic semiconductors: from dyes to oligomers. Prog Polym Sci 43:33–47.  https://doi.org/10.1016/j.progpolymsci.2014.10.010 CrossRefGoogle Scholar
  140. Gouthaman A, Azarudeen RS, Gnanaprakasam A, Sivakumar VM, Thirumarimurungan M (2018) Polymeric composites for the removal of Acid red 52 dye from aqueous solutions: synthesis, characterization, kinetic and isotherm studies. Ecotoxicol Environ Saf 160:42–51.  https://doi.org/10.1016/j.ecoenv.2018.05.011 CrossRefPubMedGoogle Scholar
  141. Gouthaman A, Auslin Asir J, Gnanaprakasam A, Sivakumar VM, Thirumarimurugan M, Riswan Ahmed MA, Azarudeen RS (2019) Enhanced dye removal using polymeric nanocomposite through incorporation of Ag doped ZnO nanoparticles: synthesis and characterization. J Hazard Mater 373:493–503.  https://doi.org/10.1016/j.jhazmat.2019.03.105 CrossRefGoogle Scholar
  142. Gouveia-Caridade C, Romeiro A, Brett CMA (2013) Electrochemical and morphological characterization of polyphenazine films on copper. Appl Surf Sci 285:380–388.  https://doi.org/10.1016/j.apsusc.2013.08.064 CrossRefGoogle Scholar
  143. Grądzka E, Makowska P, Winkler K (2018) Chemically formed conducting polyazulene: from micro- to nanostructures. Synth Met 246:115–121.  https://doi.org/10.1016/j.synthmet.2018.10.002 CrossRefGoogle Scholar
  144. Guo X, Fei GT, Su H, Zhang LD (2011) Synthesis of polyaniline micro/nanospheres by a copper(II)-catalyzed self-assembly method with superior adsorption capacity of organic dye from aqueous solution. J Mater Chem 21:8618–8625.  https://doi.org/10.1039/c0jm04489j CrossRefGoogle Scholar
  145. Guo N, Liang YM, Lan S, Liu L, Zhang JJ, Ji GJ, Gan SC (2014) Microscale hierarchical three-dimensional flowerlike TiO2/PANI composite: synthesis, characterization, and its remarkable photocatalytic activity on organic dyes under UV-light and sunlight irradiation. J Phys Chem C 118:18343–18355.  https://doi.org/10.1021/jp5044927 CrossRefGoogle Scholar
  146. Guo WL, Hao FF, Yue XX, Liu ZH, Zhang QY, Li XH, Wei J (2016) Rhodamine B removal using polyaniline-supported zero-valent iron powder in the presence of dissolved oxygen. Environ Prog Sustain Energy 35:48–55.  https://doi.org/10.1002/ep.12185 CrossRefGoogle Scholar
  147. Gupta VK, Pathania D, Kothiyal NC, Sharma G (2014) Polyaniline zirconium(IV) silicophosphate nanocomposite for remediation of methylene blue dye from waste water. J Mol Liq 190:139–145.  https://doi.org/10.1016/j.molliq.2013.10.027 CrossRefGoogle Scholar
  148. Habibi-Yangjeh A, Shekofteh-Gohari M (2019) Synthesis of magnetically recoverable visible-light-induced photocataysts by combination of Fe3O4/ZnO with BiOI and polyaniline. Prog Nat Sci: Mater Int 29:145–155.  https://doi.org/10.1016/j.pnsc.2019.03.003 CrossRefGoogle Scholar
  149. Hamzehloo M, Farahani BKA, Rostamian R (2019) Adsorption behaviour of Reactive Black dye 5 by magnetically separable nanoadsorbent. Phys Chem Res 7:475–490.  https://doi.org/10.22036/pcr.2019.186198.1639 CrossRefGoogle Scholar
  150. Hao XY, Gong JY, Ren LZ, Zhang D, Xiao X, Jiang YX, Zhang F, Tong ZW (2017) Preparation of polyaniline modified BiOBr with enhanced photocatalytic activities. Funct Mater Lett 10:1750040.  https://doi.org/10.1142/s1793604717500400 CrossRefGoogle Scholar
  151. Haque MM, Wong DKY (2017) Improved dye entrapment-liberation performance at electrochemically synthesized polypyrrole-reduced graphene oxide nanocomposite films. J Appl Electrochem 47:777–788.  https://doi.org/10.1007/s10800-017-1079-9 CrossRefGoogle Scholar
  152. Harijan DKL, Chandra V, Yoon T, Kim KS (2018) Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole. J Hazard Mater 344:576–584.  https://doi.org/10.1016/j.jhazmat.2017.10.065 CrossRefPubMedGoogle Scholar
  153. Harrison WJ, Mateer DL, Tiddy JT (1996) Liquid-crystalline J-aggregates formed by aqueous ionic cyanine dyes. J Phys Chem 100:2310–2321.  https://doi.org/10.1021/jp952532l CrossRefGoogle Scholar
  154. Hasan M, Rashid MM, Hossain MM, Al Mesfer MK, Arshad M, Danish M, Lee M, El Jery A, Kumar N (2019) Fabrication of polyaniline/activated carbon composite and its testing for methyl orange removal: optimization, equilibrium, isotherm and kinetic study. Polym Test 77:105909.  https://doi.org/10.1016/j.polymertesting.2019.105909 CrossRefGoogle Scholar
  155. Hayat A, Raziq F, Khan M, Ullah I, Rahman MU, Khan WU, Khan J, Ahmad A (2019) Visible-light enhanced photocatalytic performance of polypyrrole/g-C3N4 composites for water splitting to evolve H2 and pollutants degradation. J Photochem Photobiol A: Chem 379:88–98.  https://doi.org/10.1016/j.jphotochem.2019.05.011 CrossRefGoogle Scholar
  156. Herrera MU, Futalan CM, Gapusan R, Balela MDL (2018) Removal of methyl orange dye and copper(II) ions from aqueous solution using polyaniline-coated kapok (Ceiba pentandra) fibers. Water Sci Technol 78:1137–1147.  https://doi.org/10.2166/wst.2018.385 CrossRefPubMedGoogle Scholar
  157. Hryniewicz BM, Lima RV, Wolfart F, Vidotti M (2019) Influence of pH on the electrochemical synthesis of polypyrrole nanotubes and the supercapacitative performance evaluation. Electrochim Acta 393:447–457.  https://doi.org/10.1016/j.electacta.2018.09.200 CrossRefGoogle Scholar
  158. Hu XQ, Lu Y, Liu JH (2004) Synthesis of polypyrrole microtubes with actinomorphic morphology in the presence of a β-cyclodextrin derivative-methyl orange inclusion complex. Macromol Rapid Commun 25:1117–1120.  https://doi.org/10.1002/marc.200400067 CrossRefGoogle Scholar
  159. Hu SC, Zhou Y, Zhang LL, Liu SJ, Cui K, Lu YY, Li KN, Li XD (2018) Effect of indigo carmine concentration on the morphology and microwave adsorbing behavior of PPy prepared by template synthesis method. J Mater Sci 53:3016–3026.  https://doi.org/10.1007/s10853-017-1702-5 CrossRefGoogle Scholar
  160. Huang YS, Li JX, Chen XP, Wang XK (2014) Applications of conjugated polymer based composites in wastewater purification. RSC Adv 4:62160–62178.  https://doi.org/10.1039/c4ra11496e CrossRefGoogle Scholar
  161. Huang LB, Xu W, Hao JH (2017) Energy device applications of synthesized 1D polymer nanomaterials. Small 13:1701820.  https://doi.org/10.1002/smll.201701820 CrossRefGoogle Scholar
  162. Humpolíček P, Radaskiewicz KA, Capáková Z, Pacherník J, Bober P, Kašpárková V, Rejmontová P, Lehocký M, Ponížil P, Stejskal J (2018) Polyaniline cryogels: biocompatibility of novel conducting macroporous material. Sci Rep 8:135.  https://doi.org/10.1038/s41598-017-18290-1 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Hussein MA, El-Shishtawy RM, Alamry KA, Asiri M, Mohamed SA (2019) Efficient water disinfection using hybrid polyaniline/graphene/carbon nanotube nanocomposites. Environ Technol 40:2813–2824.  https://doi.org/10.1080/09593330.2018.1466921 CrossRefPubMedGoogle Scholar
  164. Inzelt G (2017) Recent advances in the field of conducting polymers. J Solid State Electrochem 21:1965–1975.  https://doi.org/10.1007/s10008-017-3611-6 CrossRefGoogle Scholar
  165. Ivanova VT, Garina EO, Burtseva EI, Kirillova ES, Ivanova MV, Stejskal J, Sapurina IYu (2017) Conducting polymers as sorbents of influenza viruses. Chem Pap 71:495–503.  https://doi.org/10.1007/s11696-016-0068-5 CrossRefGoogle Scholar
  166. Jain R, Jadon N, Pawaiya A (2017) Polypyrrole based next generation electrochemical sensors and biosensors: a review. Trends Anal Chem 97:363–373.  https://doi.org/10.1016/j.trac.2017.10.009 CrossRefGoogle Scholar
  167. Janaki V, Vijayaraghavan K, Ramasamy AK, Lee KJ, Oh BT, Kamala-Kannan S (2012a) Competitive adsorption of Reactive Orange 16 and Reactive Brilliant Blue R on polyaniline/bacterial extracellular polysaccharides composite – a novel eco-friendly polymer. J Hazard Mater 241–2:110–117.  https://doi.org/10.1016/j.jhazmat.2012.09.019 CrossRefGoogle Scholar
  168. Janaki V, Oh BT, Vijayaraghavan K, Kim JW, Kim SA, Ramasamy AK, Kamala-Kannan S (2012b) Application of bacterial extracellular polysaccharides/polyaniline composite for the treatment of Remazol effluent. Carbohydr Polym 88:1002–1008.  https://doi.org/10.1016/j.carbpol.2012.01.045 CrossRefGoogle Scholar
  169. Janaki V, Vijayaraghavan K, Oh BT, Lee KJ, Muthuchelian K, Ramasamy AK (2012c) Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydr Polym 90:1437–1444.  https://doi.org/10.1016/j.carbpol.2012.07.012 CrossRefPubMedGoogle Scholar
  170. Janaki V, Oh BT, Shanthi K, Lee KJ, Ramasamy AM, Kamala-Kannan S (2012d) Polyaniline/chitosan composite: an eco friendly polymer for enhanced removal of dyes from aqueous solution. Synth Met 162:974–980.  https://doi.org/10.1016/j.synthmet.2012.04.015 CrossRefGoogle Scholar
  171. Janaki V, Vijayaraghavan K, Oh BT, Ramasamy AK, Kamala-Kannan S (2013) Synthesis, characterization and application of cellulose/polyaniline nanocomposite for the treatment of simulated textile effluent. Cellulose 20:1153–1166.  https://doi.org/10.1007/s10570-013-9910-x CrossRefGoogle Scholar
  172. Jangid NK, Chauhan NPS, Punjabi PB (2014) Novel-dye-substituted polyanilines: conducting and antimicrobial properties. Polym Bull 71:2611–2630.  https://doi.org/10.1007/s00289-014-1210-6 CrossRefGoogle Scholar
  173. Jangid NK, Chauhan NPS, Punjabi PB (2015) Preparation and characterization of polyanilines bearing Rhodamine 6-G and Azure B as pendant groups. J Macromol Sci A: Pure Appl Chem 52:95–104.  https://doi.org/10.1080/190601325.2015.980714 CrossRefGoogle Scholar
  174. Javadian H, Angaji MT, Naushad M (2014) Synthesis and characterization of polyaniline/γ-alumina nanocomposite: a comparative study of the adsorption of three different anionic dyes. J Ind Eng Chem 20:3890–3900.  https://doi.org/10.1016/j.jiec.2013.12.095 CrossRefGoogle Scholar
  175. Jeong WH, Amna T, Ha YM, Hassan MS, Kim HC, Khil MS (2014) Novel PANI nanotube@TiO2 composite as efficient chemical and biological disinfectant. Chem Eng J 246:204–210.  https://doi.org/10.1016/j.cej.2014.02.054 CrossRefGoogle Scholar
  176. Jevremović A, Bober P, Mičušík M, Kuliček J, Acharya U, Pfleger J, Milojević-Rakić M, Krajišnik D, Trchová M, Stejskal J, Ćirić-Marjanović G (2019) Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption. Micropor Mesopor Mater 287:234–245.  https://doi.org/10.1016/j.micromeso.2019.06.006 CrossRefGoogle Scholar
  177. Jia YJ, Jiang JC, Sun K, Dai TY (2012) Enhancement of capacitance performance of activated carbon–polyaniline composites by introducing methyl orange. Electrochim Acta 71:213–218.  https://doi.org/10.1016/j.electacta.2012.03.150 CrossRefGoogle Scholar
  178. Jiang Y, Niu TC, Wang ZH, Tan WS, Liu F, Kong Y (2018) Electrochemical polymerization of alizarin and the electrochemical properties of poly(alizarin). Ionics 24:1391–1397.  https://doi.org/10.1007/s11581-017-2288-2 CrossRefGoogle Scholar
  179. Jiao Z, Tang Y, Zhao PD, Li S, Sun TC, Cui SC, Cheng LL (2019) Synthesis of Z-scheme g-C3H4/PPy/Bi2WO6 composite with enhanced visible-light photocatalytic performance. Mater Res Bull 113:241–249.  https://doi.org/10.1016/j.materresbull.2019.02.016 CrossRefGoogle Scholar
  180. Jing LQ, Xu YG, Xie M, Liu J, Deng JJ, Huang LY, Xu H, Li HM (2019) Three dimensional polyaniline MgIn2S4 nanoflower photocatalysts accelerated interfacial charge transfer for the photoreduction of Cr(VI), photodegradation of organic pollution and photocatalytic H2 production. Chem Eng J 360:1601–1612.  https://doi.org/10.1016/j.cej.2018.10.214 CrossRefGoogle Scholar
  181. Joulazadeh M, Navarchian AH (2015) Polypyrrole nanotubes versus nanofibers: a proposed mechanism for predicting the final morphology. Synth Met 199:37–44.  https://doi.org/10.1016/j.synthmet.2014.10.036 CrossRefGoogle Scholar
  182. Jung HR, Kim KN, Lee WJ (2019) Heterostructured Co0.5Mn0.5Fe2O4-polyaniline nanofibers: highly efficient photocatalysis for photodegradation of methyl orange. Korean J Chem Eng 36:807–815.  https://doi.org/10.1007/s11814-019-0258-2 CrossRefGoogle Scholar
  183. Kang ZP, Zhang YHPJ, Zhu ZG (2019) A shriveled rectangular carbon tube with the concave surface for high-performance enzymatic glucose/O2 biofuel cells. Biosens Bioelectron 132:76–83.  https://doi.org/10.1016/j.bios.2019.02.044 CrossRefPubMedGoogle Scholar
  184. Kannusamy P, Sivalingam T (2013) Synthesis of porous chitosan-polyaniline/ZnO hybrid composite and application for removal of reactive orange 16 dye. Colloid Surf B-Biointerfaces 108:229–238.  https://doi.org/10.1016/j.colsurfb.2013.02.015 CrossRefGoogle Scholar
  185. Kanwal F, Rehman R, Bakhsh IQ (2018) Batch wise sorptive amputation of diamond green dye from aqueous medium by novel polyaniline-Alstonia scholaris leaves composite in ecofriendly way. J Clean Prod 196:350–357.  https://doi.org/10.1016/j.jclepro.2018.06.056 CrossRefGoogle Scholar
  186. Karabiberoglu SU, Dursun Z (2017) Over-oxidized poly(phenol red) film modified glassy carbon electrode for anodic stripping voltammetric determination of ultra-trace antimony(III). Electroanalysis 29:1069–1080.  https://doi.org/10.1002/elan.201600629 CrossRefGoogle Scholar
  187. Karamipour A, Rasouli N, Movahedi M, Salavati H (2016) A kinetic study on adsorption of Congo red from aqueous solution by ZnO-ZnFe2O4-polypyrrole magnetic nanocomposite. Phys Chem Res 4:291–301.Google Scholar
  188. Karpuraranjith M, Thambidurai S (2016) Biotemplate SnO2 particles intercalated PANI matrix: enhanced photo catalytic activity for degradation of MB and RY-15 dye. Polym Degrad Stab 133:108–118.  https://doi.org/10.1016/j.polydegradstab.2016.08.006 CrossRefGoogle Scholar
  189. Karri RR, Tanzifi M, Yaraki MT, Sahu JN (2018) Optimization and modeling of methyl orange adsorption on polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network. J Environ Manag 223:517–529.  https://doi.org/10.1016/j.jenvman.2018.06.027 CrossRefGoogle Scholar
  190. Kaushal S, Badru R, Kumar S, Kaur H, Singh P (2018) Efficient removal of cationic and anionic dyes from their binary mixtures by organic-inorganic hybrid material. Inorg Organometal Polym Mater 28:968–977.  https://doi.org/10.1007/s10904-018-0817-8 CrossRefGoogle Scholar
  191. Kharazi P, Rahimi R, Rabbani M (2019) Copper ferrite-polyaniline nanocomposite: structural, thermal, magnetic and dye adsorption properties. Solid State Sci 93:95–100.  https://doi.org/10.1016/j.solidstatesciences.2019.05.007 CrossRefGoogle Scholar
  192. Khatoon H, Ahmad S (2017) A review on conducting polymer reinforced polyurethane composites. J Ind Eng Chem 53:1–12.  https://doi.org/10.1016/j.jiec.2017.03.036 CrossRefGoogle Scholar
  193. Kim KN, Jung HR, Lee WJ (2017) Magnetically separable hollow MnFe2O4-polyaniline composite nanofibers: highly enhanced visible light photodegradation of methyl orange. Sci Adv Mater 9:1993–1997.  https://doi.org/10.1166/sam.2017.3201 CrossRefGoogle Scholar
  194. Kim Y, Lin Z, Jeon I, Van Voorhis T, Swager TM (2018) Polyaniline nanofiber electrode for reversible capture and release of mercury(II) from water. J Am Chem Soc 140:14413–14420.  https://doi.org/10.1021/jacs.8b09119 CrossRefPubMedGoogle Scholar
  195. Kohl M, Kalendová A, Schmidtová E (2017) Enhancing corrosion resistance of zinc-filled protective coatings using conductive polymers. Chem Pap 71:409–421.  https://doi.org/10.1007/s11696-016-0054-y CrossRefGoogle Scholar
  196. Kong P, Liu P, Tan H, Pei LJ, Wang J, Zhu PQ, Gu XM, Zheng ZF, Li Z (2019a) Conjugated HCl-doped polyaniline for photocatalytic oxidative coupling of amines under visible light. Catal Sci Technol 9:753–761.  https://doi.org/10.1039/c8cy02280a CrossRefGoogle Scholar
  197. Kong FM, Li SX, Liu CJ, Yang Y, Tan ZL (2019b) Synergistic effect of POMPCs and PPy for enhancing visible-light photocatalytic activity and high quantum yields. J Cluster Sci 30:553–559.  https://doi.org/10.1007/s10876-019-01506-x CrossRefGoogle Scholar
  198. Konyushenko EN, Stejskal J, Trchová M, Hradil J, Kovářová J, Prokeš J, Cieslar M, Hwang JY, Chen KH, Sapurina I (2006) Multi-wall carbon nanotubes coated with polyaniline. Polymer 47:5715–5723.  https://doi.org/10.1016/j.polymer.05.059 CrossRefGoogle Scholar
  199. Kopecká J, Kopecký D, Vrňata M, Fitl P, Stejskal J, Trchová M, Bober P, Morávková Z, Prokeš J, Sapurina I (2014) Polypyrrole nanotubes: mechanism of formation. RSC Adv 4:1551–1558.  https://doi.org/10.1039/c3ra45841e CrossRefGoogle Scholar
  200. Kopecká J, Mrlík M, Olejník R, Kopecký D, Vrňata M, Prokeš J, Bober P, Morávková Z, Trchová M, Stejskal J (2016) Polypyrrole nanotubes and their carbonized analogs: synthesis, characterization, gas sensing properties. Sensors 16:1917.  https://doi.org/10.3390/s16111917 CrossRefGoogle Scholar
  201. Kopecký D, Varga M, Prokeš J, Vrňata M, Trchová M, Kopecká J, Václavík M (2017) Optimization routes for high conductivity of polypyrrole nanotubes prepared in the presence of methyl orange. Synth Met 230:89–96.  https://doi.org/10.1016/j.synthmet.2017.06.004 CrossRefGoogle Scholar
  202. Koysuren O (2019) Improving ultraviolet light photocatalytic activity of polyaniline/silicon carbide composites by Fe-doping. J Appl Polym Sci 136:48524.  https://doi.org/10.1002/app.48524 CrossRefGoogle Scholar
  203. Koysuren O, Koysuren NH (2019) Photocatalytic activity of polyaniline/Fe-doped TiO2 composites by in situ polymerization method. J Macromol Sci Part A Pure Appl Chem 56:267–276.  https://doi.org/10.1080/10601325.2019.1565548 CrossRefGoogle Scholar
  204. Krehula LK, Stjepanovic J, Perlog M, Krehula S, Gilja V, Travas-Sejdic J, Hrnjak-Murgic Z (2019) Conducting polymer polypyrrole and titanium dioxide nanocomposites for photocatalysis of RR45 dye under visible light. Polym Bull 76:1697–1715.  https://doi.org/10.1007/s00289-018-2463-2 CrossRefGoogle Scholar
  205. Krishnaswamy S, Ragupathi V, Raman Panigrahi P, Nagarajan GS (2019) Study of optical and electrical property of NaI-doped polypyrrole thin film with excellent photocatalytic property at visible light. Polym Bull 76:5213–5231.  https://doi.org/10.1007/s00289-018-2650-1 CrossRefGoogle Scholar
  206. Kumar R (2016) Mixed phase lamellar titania-titanate anchored with Ag2O and polypyrrole for enhanced adsorption and photocatalytic activity. J Colloid Interface Sci 477:83–93.  https://doi.org/10.1016/j.jcis.1016.05.039 CrossRefPubMedGoogle Scholar
  207. Kumar R, Ansari MO, Parveen N, Barakat MA, Cho MH (2015) Simple route for the generation of differently functionalized PVC@graphene–polyaniline fiber bundles for the removal of Congo red from wastewater. RSC Adv 5:61486–61494.  https://doi.org/10.1039/c5ra10378a CrossRefGoogle Scholar
  208. Kumar R, Ansari MO, Parveen N, Oves M, Barakat MA, Alshahri A, Khan MY, Cho MH (2016) Facile route to a conducting ternary polyaniline@TiO2/GN nanocomposite for environmentally benign applications: photocatalytic degradation of pollutants and biological activity. RSC Adv 6:111308–111317.  https://doi.org/10.1039/c6ra24079h CrossRefGoogle Scholar
  209. Kumar R, Oves M, Almeelbi T, Al-Makishah NH, Barakat MA (2017) Hybrid chitosan/polyaniline-polypyrrole biomaterial for enhanced adsorption and antimicrobial activity. J Colloid Interface Sci 490:488–496.  https://doi.org/10.1016/j.jcis.2016.11.082 CrossRefPubMedGoogle Scholar
  210. Kumar R, Ansari SA, Barakat MA, Aljaafari A, Cho MH (2018) A polyaniline@MoS2-based organic–inorganic nanohybrid for the removal of Congo red: adsorption kinetic, thermodynamic and isotherm studies. New J Chem 42:18802–18809.  https://doi.org/10.1039/c8nj02803f CrossRefGoogle Scholar
  211. Lakshmi PV, Rajagopalan V (2016) A new synthetic nanocomposite for dye degradation in dark and light. Sci Rep 6:38606.  https://doi.org/10.1038/srep38606 CrossRefGoogle Scholar
  212. Lavanya M, Reddy YVM, Kiranmai S, Venu M, Madhavi G (2015) Selective determination of dopamine in presence of ascorbic acid by using Triton X-100 poly(safranin) modified carbon paste electrode. Anal Bioanal Electrochem 7:555–568.Google Scholar
  213. Le TA, Tran NQ, Hong Y, Lee H (2019) Intertwined titanium carbide MXene within a 3 D Tangled polypyrrole nanowires matrix for enhanced supercapacitor performances. Chem Eur J 25:1037–1043.  https://doi.org/10.1002/chem.201804291 CrossRefPubMedGoogle Scholar
  214. Lee SL, Chang CJ (2019) Recent developments about conductive polymer based composite photocatalysts. Polymers 11:206.  https://doi.org/10.3390/polym11020206 CrossRefPubMedCentralGoogle Scholar
  215. Lee JW, Lee HI, Park SJ (2018) Facile synthesis of petroleum-based activated carbons/tubular polypyrrole composites with enhanced electrochemical performance as supercapacitor electrode materials. Electrochim Acta 263:447–453.  https://doi.org/10.1016/j.elecacta.2018.01.071 CrossRefGoogle Scholar
  216. Lei H, Pan N, Wang QX, Zou H (2018) Facile synthesis of phytic acid impregnated polyaniline for enhanced U(VI) adsorption. J Chem Eng Data 63:3989–3997.  https://doi.org/10.1021/acs.jced.8b00688 CrossRefGoogle Scholar
  217. Li D, Huang JX, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–142.  https://doi.org/10.1021/ar800080n CrossRefPubMedGoogle Scholar
  218. Li JJ, Feng JT, Yan W (2012) Synthesis of polypyrrole-modified TiO2 composite adsorbent and its adsorption performance on Acid Red G. J Appl Polym Sci 128:3231–3239.  https://doi.org/10.1002/app38525 CrossRefGoogle Scholar
  219. Li JJ, Feng JT, Yan W (2013) Excellent adsorption desorption characteristics of polypyrrole/TiO2 composite for Methylene Blue. Appl Surf Sci 279:400–408.  https://doi.org/10.1016/j.apsusc.2013.04.127 CrossRefGoogle Scholar
  220. Li XQ, Qi FF, Zhou L, He L, Xu Q (2015) p-Toluene sulfonate and polypyrrole modified Nylon 6 nanofibers mat for solid phase extraction of Basic Orange II. Chin J Anal Chem 43:1594–1599.Google Scholar
  221. Li YB, Jiang YM, Hu SC, Zhang XD, Zhai J, Han HC, Xiao D, Liu PF (2016) Control of morphology and electromagnetic properties of polypyrrole synthesized by the template method. High Perform Polym 28:225–230.  https://doi.org/10.1177/0954008315577822 CrossRefGoogle Scholar
  222. Li DL, Yang YG, Li CZ, Liu YF (2017a) A mechanistic study on decontamination of methyl orange dyes from aqueous phase by mesoporous pulp waste and polyaniline. Environ Res 154:139–144.  https://doi.org/10.1016/j.envres.2016.12.027 CrossRefPubMedGoogle Scholar
  223. Li Y, Bober P, Trchová M, Stejskal J (2017b) Polypyrrole prepared in the presence of methyl orange and ethyl orange: nanotubes versus globules. A comparison study on the improvement of conductivity. J Mater Chem C 5:4236–4245.  https://doi.org/10.1039/c7tc00206h CrossRefGoogle Scholar
  224. Li XL, Lu HJ, Zhang Y, He F (2017c) Efficient removal of organic pollutants from aqueous media using newly synthesized polypyrrole/CNTs-CoFe2O4 magnetic nanocomposites. Chem Eng J 316:893–902.  https://doi.org/10.1016/j.cdej.2017.02.037 CrossRefGoogle Scholar
  225. Li J, Wu Z, Duan QY, Alsaedi A, Hayat T, Chen CL (2018a) Decoration of ZIF-8 on polypyrrole nanotubes for highly efficient and selective capture of U(VI). J Clean Prod 204:896–905.  https://doi.org/10.1016/j.jclepro.2018.09.050 CrossRefGoogle Scholar
  226. Li XQ, Wang JD, Hu ZM, Li MJ, Ogino K (2018b) In situ polypyrrole polymerization enhances the photocatalytic activity of nanofibrous TiO2/SiO2 membranes. Chin Chem Lett 29:166–170.  https://doi.org/10.1016/j.cclet.2017.05.020 CrossRefGoogle Scholar
  227. Li XH, Miao JJ, Yin ZD, Xu XD, Shi HM (2019a) Polypyrrole-modified Nylon 6 nanofibers as adsorbent for the extraction of two β-lactam antibiotics in water followed by determination with capillary electrophoresis. Molecules 24:2198.  https://doi.org/10.3390/molecules24122198 CrossRefPubMedCentralGoogle Scholar
  228. Li JJ, Feng JT, Yan W (2019b) Enhanced adsorption performance of PPy/TiO2 prepared on surface of TiO2 without calcination. SN Appl Sci 1:617.  https://doi.org/10.1007/s42452-019-0628-8 CrossRefGoogle Scholar
  229. Lin J, Xu XL, Wang J, Zhang BF, Li D, Wang C, Jin YL, Zhu JB (2018) Nitrogen-doped hierarchically porous carbonaceous nanotubes for lithium ion batteries. Chem Eng J 352:964–971.  https://doi.org/10.1016/j.cej.2018.06.057 CrossRefGoogle Scholar
  230. Lin Y, Wu X, Han Y, Yang CP, Ma Y, Du C, Teng Q, Liu HY, Zhong YY (2019) Spatial separation of photogenerated carriers and enhanced photocatalytic performance on Ag3PO4 catalysts via coupling with PPy and MWCNT. Appl Catal B-Environ 258:UNSP117969.  https://doi.org/10.1016/j.apcatb.2019.117969 CrossRefGoogle Scholar
  231. Liu XQ, Cai L (2018) Novel indirect Z-scheme photocatalyst of Ag nanoparticles and polymer polypyrrole co-modified BiOBr for photocatalytic decomposition of organic pollutants. Appl Surf Sci 445:242–254.  https://doi.org/10.1016/j.apsusc.2018.03.178 CrossRefGoogle Scholar
  232. Liu XQ, Cai L (2019) A novel double Z-scheme BiOBr-GO-polyaniline photocatalyst: study on the excellent photocatalytic performance and photocatalytic mechanism. Appl Surf Sci 483:875–887.  https://doi.org/10.1016/j.apsusc.2019.03.273 CrossRefGoogle Scholar
  233. Liu JL, Liu P (2019) Synthesis and electrochemical properties of various dimensional poly(1,5-diaminoanthraquinone) nanostructures: nanoparticles, nanotubes and nanoribbons. J Colloid Interface Sci 542:1–7.  https://doi.org/10.1016/j.jcis.2019.01.120 CrossRefPubMedGoogle Scholar
  234. Liu WW, Li XQ, Li MJ, Li YG, Ge MQ (2015) Preparation of polyaniline/filter paper composite for removal of Coomassie Brilliant Blue. Polym Polym Compos 23:191–197.  https://doi.org/10.1177/096739111502300310 CrossRefGoogle Scholar
  235. Liu YX, Yan MY, Geng YY, Huang J (2016) Laccase immobilization on poly(p-phenylenediamine)/Fe3O4 nanocomposite for Reactive Blue 19 dye removal. Appl Sci 6:232.  https://doi.org/10.3390/app60890232 CrossRefGoogle Scholar
  236. Liu YP, Li JJ, Zhu JW, Lyu W, Xu H, Feng JT, Yan W (2018a) The adsorption property and mechanism of phenyl/amine end-capped tetraaniline for alizarin red S. Colloid Polym Sci 296:1777–1786.  https://doi.org/10.1007/s00396-018-4401-0 CrossRefGoogle Scholar
  237. Liu WK, Yang L, Xu SH, Chen Y, Liu BH, Li Z, Jiang CL (2018b) Efficient removal of hexavalent chromium from water by an adsorption–reduction mechanism with sandwiched nanocomposites. RSC Adv 8:15087–15093.  https://doi.org/10.1039/c8ra01805g CrossRefGoogle Scholar
  238. Liu XT, Zhu HC, Wu JJ, Wang F, Wei FY (2019) The improved photocatalytic capacity derived from AgI-modified mesoporous PANI spherical shell with open pores. Res Chem Intermed 45:2587–2603.  https://doi.org/10.1007/s11164-019-03753-z CrossRefGoogle Scholar
  239. Loguercio LF, Demingos P, de Mattos Manica L, Griep JB, Santos MJL, Ferreira J (2016) Simple one-step method to synthesize polypyrrole-indigo carmine-silver nanocomposite. J Chem 2016:5284259.  https://doi.org/10.1155/2016/5284259 CrossRefGoogle Scholar
  240. Long YZ, Li MM, Gu CZ, Wan MX, Duvail JL, Liu ZW, Fan ZY (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36:1415–1442.  https://doi.org/10.1016/j.progpolymsci.2011.04.001 CrossRefGoogle Scholar
  241. Lu TT, Zhu YF, Wang WB, Qi YX, Wang AQ (2018) Polyaniline-functionalized porous adsorbent for Sr2+ adsorption. J Radioanal Nuclear Chem 317:907–917.  https://doi.org/10.1007/s10967-018-5935-9 CrossRefGoogle Scholar
  242. Luguercio LF, Alves CC, Thesing A, Ferreira J (2015) Enhanced electrochromic properties of a polypyrrole–indigo carmine–gold nanoparticles composite. Phys Chem Chem Phys 17:1234–1240.  https://doi.org/10.1039/c4cp04262j CrossRefGoogle Scholar
  243. Lyu W, Yu MT, Feng JT, Yan W (2018) Highly crystalline polyaniline nanofibers coating with low-cost biomass for easy separation and high efficient removal of anionic dye ARG from aqueous solution. Appl Surf Sci 458:413–424.  https://doi.org/10.1016/japsusc.2018.07.074 CrossRefGoogle Scholar
  244. Lyu W, Yu MT, Feng JT, Yan W (2019) Facile synthesis of coral-like hierarchical polyaniline micro/nanostructures with enhanced supercapacitance and adsorption performance. Polymer 162:130–138.  https://doi.org/10.1016/j.polymer.2018.12.037 CrossRefGoogle Scholar
  245. Ma FF, Zhang D, Zhang N, Huang T, Wang Y (2018) Polydopamine-assisted deposition of polypyrrole on electrospun poly(vinylidene fluoride) nanofibers for bidirectional removal of cation and anion dyes. Chem Eng J 354:432–444.  https://doi.org/10.1016/j.cej.2018.08.948 CrossRefGoogle Scholar
  246. Ma ML, Yang YY, Li WT, Ma Y, Tong ZY, Huang WB, Chen L, Wu GL, Wang HL, Lyu P (2019) Synthesis of yolk-shell structure Fe3O4/P(MAA-MBAA)-PPy/Au/void/TiO2 magnetic microspheres as visible light active photocatalyst for degradation of organic pollutants. J Alloys Compd 810:151807.  https://doi.org/10.1016/j.jallcom.2019.151807 CrossRefGoogle Scholar
  247. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew Chem-Int Ed 40:2581–2590.  https://doi.org/10.1002/1521-3773(20010716)40:14%3c2581:aid-anie2581%3e3.0.co;2-2 CrossRefGoogle Scholar
  248. Mahanta D, Madras G, Radhakrishnan S, Patil S (2008) Adsorption of sulfonated dyes by polyaniline emeraldine salt and its kinetics. J Phys Chem B 112:10153–10157.  https://doi.org/10.1021/jp803903x CrossRefPubMedGoogle Scholar
  249. Mahanta D, Munichandraiah N, Radhakrishnan S, Madras G, Patil S (2011a) Polyaniline modified electrodes for detection of dyes. Synth Met 161:659–664.  https://doi.org/10.1016/j.synthmet.2011.01.005 CrossRefGoogle Scholar
  250. Mahanta D, Manna U, Madras G, Patil S (2011b) Multilayer self-assembly of TiO2 nanoparticles and polyaniline-grafted chitosan copolymer (CPANI) for photocatalysis. ACS Appl Mater Interfaces 3:84–92.  https://doi.org/10.1021/am1009265 CrossRefPubMedGoogle Scholar
  251. Mahlangu T, Das R, Abia LK, Onyango M, Ray SS, Maity A (2019) Thiol-modified magnetic polypyrrole nanocomposite: an effective adsorbent for the adsorption of silver ions from aqueous solution and subsequent water disinfection by silver-laden nanocomposite. Chem Eng J 360:423–434.  https://doi.org/10.1016/j.cej.2018.11.231 CrossRefGoogle Scholar
  252. Mahto TK, Chowdhuri AR, Sahu SK (2014) Polyaniline-functionalized magnetic nanoparticles for the removal of toxic dye from wastewater. J Appl Polym Sci 131:40840.  https://doi.org/10.1002/app.40840 CrossRefGoogle Scholar
  253. Mahto TK, Chandra S, Haldar C, Sahu SK (2015) Kinetic and thermodynamic study of polyaniline functionalized magnetic mesoporous silica for magnetic field guided dye adsorption. RSC Adv 5:47909–47919.  https://doi.org/10.1039/c5ra08284f CrossRefGoogle Scholar
  254. Majumdar S, Baishya A, Mahanta D (2019) Kinetic and equilibrium modeling of anionic dye adsorption on polyaniline emeraldine salt: batch and fixed bed column studies. Fiber Polym 20:1226–1235.  https://doi.org/10.1007/s12221-019-8355-8 CrossRefGoogle Scholar
  255. Mao H, Cao ZQ, Guo X, Dyn DY, Liu DL, Wu SY, Zhang Y, Song XM (2019) Ultrathin NiS/Ni(OH)2 nanosheets filled within ammonium polyacrylate-functionalized polypyrrole nanotubes as an unique nanoconfined system for nonenzymatic glucose sensors. ACS Appl Mater Interfaces 11:10153–10162.  https://doi.org/10.1021/acsami.8b20726 CrossRefPubMedGoogle Scholar
  256. Maqbool M, Bhatti HN, Sadaf S, Zahid M, Shahid M (2019) A robust approach towards green synthesis of polyaniline-Scenedesmus biocomposite for wastewater treatment applications. Mater Res Exp 6:055308.  https://doi.org/10.1088/2053-1591/ab025d CrossRefGoogle Scholar
  257. Maráková N, Humpolíček P, Kašpárková V, Capáková Z, Martinková L, Bober P, Trchová M, Stejskal J (2017) Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Appl Surf Sci 356:169–176.  https://doi.org/10.1016/j.apsusc.2016.11.024 CrossRefGoogle Scholar
  258. Marquez-Herrera A, Ovando-Medina VM, Castillo-Reyes BE, Zapata-Torresa M, Mendelez-Lira M, González-Castaneda J (2016) Facile synthesis pf SrCO3-Sr(OH)2/PPy nanocomposite with enhanced photocatalytic activity under visible light. Materials 9:30.  https://doi.org/10.3390/ma9010030 CrossRefPubMedCentralGoogle Scholar
  259. Maruthapandi M, Kumar VB, Luong JHT, Gedanken A (2018) Kinetics, isotherm, and thermodynamic studies on methylene blue adsorption on polyaniline and polypyrrole macro–nanoparticles synthesized by C-dot-initiated polymerization. ACS Omega 3:7196–7203.  https://doi.org/10.1021/acsomega.8b00478 CrossRefPubMedPubMedCentralGoogle Scholar
  260. Megha R, Ravikiran YT, Vijaya Kumari SC, Raj Prakash HG, Ramana CVV, Thomas S (2019) Enhancement in alternating current conductivity of HCl doped polyaniline by modified titania. Compos Interfaces 26:309–324.  https://doi.org/10.1080/09276440.2018.1499352 CrossRefGoogle Scholar
  261. Meng Y, Zhang LY, Chai LY, Yu WT, Wang T, Wang HY (2014) Facile and large-scale synthesis of poly(m-phenylenediamine) nanobelts with high surface area and superior dye adsorption ability. RSC Adv 4:45244–45250.  https://doi.org/10.1039/c4ra06553k CrossRefGoogle Scholar
  262. Meng OF, Cai KF, Chen YX, Chen LD (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285.  https://doi.org/10.1016/j.nanoen.2017.04.040 CrossRefGoogle Scholar
  263. Mesdaghi S, Yousefi M, Sadr MH, Mahdavian A (2019) The effect of PANI and MWCNT on magnetic and photocatalytic properties of substituted barium hexaferrite nanocomposites. Mater Chem Phys 236:121786.  https://doi.org/10.1016/j.matchemphys.2019.121786 CrossRefGoogle Scholar
  264. Metwally SS, Hassan HS, Sam NM (2019) Impact of environmental conditions on the sorption behavior of 60C and 152+154Eu radionuclides onto polyaniline/zirconium aluminate composite. J Mol Liq 287:110941.  https://doi.org/10.1016/j.molliq.2019.110941 CrossRefGoogle Scholar
  265. Min SX, Wang F, Han YQ (2007) An investigation on synthesis and photocatalytic activity of polyaniline sensitized nanocrystalline TiO2 composites. J Mater Sci 42:9966–9972.  https://doi.org/10.1007/s10853-007-2074-z CrossRefGoogle Scholar
  266. Min SX, Wang F, Feng L, Tong YC, Yang ZR (2008) Synthesis and photocatalytic activity of TiO2/conjugated polymer complex nanoparticles. Chin Chem Lett 19:742–746.  https://doi.org/10.1016/j.cclet.2008.03.016 CrossRefGoogle Scholar
  267. Minisy IM, Bober P, Acharya U, Trchová M, Hromádková J, Pfleger J, Stejskal J (2019a) Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer 174:11–17.  https://doi.org/10.1016/j.polymer.2019.04.045 CrossRefGoogle Scholar
  268. Minisy IM, Salahuddin NA, Ayad MM (2019b) Chitosan/polyaniline hybrid for removal of cationic and anionic dyes from aqueous solutions. J Appl Polym Sci 136:47056.  https://doi.org/10.1002/app.47056 CrossRefGoogle Scholar
  269. Minisy IM, Gavrilov N, Acharya U, Morávková Z, Unterweger C, Mičušík M, Filippov SK, Kredatusová J, Pašti IA, Breitenbach S, Ćirić-Marjanović G, Stejskal J, Bober P (2019c) Tailoring of carbonized polypyrrole nanotubes core by different polypyrrole shells for oxygen reduction reaction selectivity modification. J Colloid Interface Sci 551:184–194.  https://doi.org/10.1016/j.jcis.2019.04.064 CrossRefPubMedGoogle Scholar
  270. Mitra M, Ahamed ST, Ghosh A, Mondal A, Kargupta K, Ganguly S, Banerjee D (2019) Polyaniline/reduced graphene oxide composite-enhanced visible-light-driven photocatalytic activity for the degradation of organic dyes. ACS Omega 4:1623–1635.  https://doi.org/10.1021/acsomega.8b02941 CrossRefPubMedPubMedCentralGoogle Scholar
  271. Mohamed F, Abukhadra MR, Shaban M (2018) Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (PPyNF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties. Sci Total Environ 640–1:352–363.  https://doi.org/10.1016/j.scitotenv.2018.05.316 CrossRefGoogle Scholar
  272. Mohammadi R, Massoumi B, Galandar F (2019) Polyaniline-TiO2/graphene nanocomposite: an efficient catalyst for the removal of anionic dyes. Desalin Water Treat 142:321–330.  https://doi.org/10.5004/dwt.2019.23525 CrossRefGoogle Scholar
  273. Mondal S, Rana U, Das P, Malik S (2019a) Network of polyaniline nanotubes for wastewater treatment and oil/water separation. Appl Polym Mater 1:1624–1633.  https://doi.org/10.1021/acsapm.9b00199 CrossRefGoogle Scholar
  274. Mondal P, Satra J, Ghorui UK, Saha N, Srivastava DN, Adhikary B (2019b) Facile fabrication of novel hetero-structured organic-inorganic high-performance nanocatalyst: a smart system for enhanced catalytic activity toward ciprofloxacin degradation and oxygen reduction. ACS Appl Nano Mater 1:6015–16026.  https://doi.org/10.1021/acsanm.8b00937 CrossRefGoogle Scholar
  275. Mousli F, Chaouchi A, Jouini M, Maurel F, Kadri A, Chehimi MM (2019) Polyaniline-grafted RuO2/TiO2 heterostructure for the catalysed degradation of methyl orange in darkness. Catalysts 9:578.  https://doi.org/10.3390/catal9070578 CrossRefGoogle Scholar
  276. Mu B, Wang AQ (2015) One-pot fabrication of multifunctional superparamagnetic attapulgite/Fe3O4/polyaniline nanocomposites served as an adsorbent and catalyst support. J Mater Chem A 3:281–289.  https://doi.org/10.1039/c4ta05367b CrossRefGoogle Scholar
  277. Mu B, Zheng Y, Wang AQ (2015) Facile fabrication of polyaniline/kapok fiber composites via a semidry method and application in adsorption and catalyst support. Cellulose 22:615–624.  https://doi.org/10.1007/s10570-014-0506-x CrossRefGoogle Scholar
  278. Mu B, Tang J, Zhang L, Wang AQ (2016) Preparation, characterization and application on dye adsorption of a well-defined two-dimensional superparamagnetic clay/polyaniline/Fe3O4 nanocomposite. Appl Clay Sci 132:7–16.  https://doi.org/10.1016/j.clay.2016.06.005 CrossRefGoogle Scholar
  279. Mu B, Tang J, Zhang L, Wang AQ (2017) Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye. Sci Rep 7:5347.  https://doi.org/10.1038/s41598-017-05755-6 CrossRefPubMedPubMedCentralGoogle Scholar
  280. Muhammad A, Shah AUA, Bilal S, Rahman G (2019a) Basic Blue dye adsorption from water using polyaniline/magnetite (Fe3O4) composites: kinetic and thetmodynamic aspects. Materials 12:1764.  https://doi.org/10.3390/ma12111764 CrossRefPubMedCentralGoogle Scholar
  281. Muhammad A, Shah AUA, Bilal S (2019b) Comparative study of the adsorption of Acid Blue 40 on polyaniline, magnetic oxide and their composites: synthesis, characterization and application. Materials 12:2854.  https://doi.org/10.3390/ma12182854 CrossRefPubMedCentralGoogle Scholar
  282. Mukhta B, Mahanta D, Patil S, Madras G (2007) Synthesis and photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites. J Solid State Comun 180:2986–2989.  https://doi.org/10.1016/j.jssc.2007.07.017 CrossRefGoogle Scholar
  283. Nair SS, Mishra SK, Kumar D (2019) Recent progress in conductive polymeric materials for biomedical applications. Polym Adv Technol 2019:1–22.  https://doi.org/10.1002/pat.4725 CrossRefGoogle Scholar
  284. Nasar A, Mashkoor F (2019) Application of polyaniline-based adsorbents for dye removal from water and wastewater – a review. Environ Sci Pollution Res 26:5333–5356.  https://doi.org/10.1007/s11356-018-3990-y CrossRefGoogle Scholar
  285. Nerkar NV, Kondawar SB, Brahme SK, Kim YH (2018) Polyaniline/ZnO nanocomposites for the removal of methyl orange dye from waste water. Int J Mod Phys B 32:1840085.  https://doi.org/10.1142/s0217979218400854 CrossRefGoogle Scholar
  286. Niu B, Xu ZM (2019) A stable Ta3N5@PANI core-shell photocatalyst: shell thickness effect, high-efficient photocatalytic performance and enhanced mechanism. J Catal. 371:175–184.  https://doi.org/10.1016/j.jcat.2019.01.025 CrossRefGoogle Scholar
  287. Olad A, Azhar FF, Shargh M, Jharfi S (2014) Application of response surface methodology for modeling of reactive dye removal from solution using starch-montmorillonite/polyaniline nanocomposite. Polym Eng Sci 54:1595–1607.  https://doi.org/10.1002/pen.23697 CrossRefGoogle Scholar
  288. Omastová M, Mičušík M (2012) Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation. Chem Pap 66:392–414.  https://doi.org/10.2478/s11696-011-0120-4 CrossRefGoogle Scholar
  289. Omastová M, Trchová M, Kovářová J, Stejskal J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138:447–455.  https://doi.org/10.1016/s0379-6779(02)00498-8 CrossRefGoogle Scholar
  290. Ossoss KM, Hassan MER, Al-Hussaini AS (2019) Novel Fe2O3@PANI-o-PDA core-shell nanocomposites for photocatalytic degradation of aromatic dyes. J Polym Res 26:199.  https://doi.org/10.1007/s10965-019-1856-8 CrossRefGoogle Scholar
  291. Othman N, Noor UM, Herman SH (2017) Effect of the deposited layer, withdrawal speed and coated length on immobilised bromothymol blue in polyaniline sol gel pH sensing sensitivity. Pertanika J Sci Technol 25:205–214.Google Scholar
  292. Ovando-Medina VM, Díaz-Florés PE, Martínez-Gutierréz H, Moreno Ruíz LA, Antonio-Carmona ID, Hernandéz-Ordoñez M (2014) Composite of cellulosic agricultural waste coated with semiconducting polypyrrole as a potential dye remover. Polym Compos 35:186–193.  https://doi.org/10.1002/pc.22649 CrossRefGoogle Scholar
  293. Ovando-Medina VM, Vizcaino-Mercado J, Gonzáles-Ortega O, de la Garza JAR, Martinez Gutiérrez H (2015a) Synthesis of α-cellulose/polypyrrole composite for the removal of Reactive Red dye from aqueous solution: kinetics and equilibrium modeling. Polym Compos 36:312–321.  https://doi.org/10.1002/pc.22945 CrossRefGoogle Scholar
  294. Ovando-Medina VM, López RG, Castillo-Reyes BE, Alonso-Dávila PA, Martínez-Gutiérerrez HM, González-Ortega O, Farias-Cepeda L (2015b) Composite of acicular rod-like ZnO nanoparticles and semiconducting polypyrrole photoactive under visible light irradiation for methylene blue dye degradation. Colloid Polym Sci 293:3459–3469.  https://doi.org/10.1007/s00396-015-3717-2 CrossRefGoogle Scholar
  295. Ovando-Medina VM, Dávila-Guzmán NE, Perez N, Déctor A (2018) A semi-conducting polypyrrole/coffee grounds waste composite for rhodamine B dye adsorption. Iran Polym J 27:171–181.  https://doi.org/10.1007/s13726-018-0598-5 CrossRefGoogle Scholar
  296. Pandimurugan R, Thambidurai S (2016) Synthesis of seaweed-ZnO-PANI hybrid composite for adsorption of methylene blue dye. J Environ Chem Eng 4:1332–1347.  https://doi.org/10.1016/j.jece.2016.01.030 CrossRefGoogle Scholar
  297. Pant A, Tanwar R, Kaur B, Mandal UK (2018) A magnetically recyclable photocatalyst with commendable dye degradation activity at ambient conditions. Sci Rep 8:14700.  https://doi.org/10.1038/s41598-018-32911-3 CrossRefPubMedPubMedCentralGoogle Scholar
  298. Parashar K, Ballav N, Debnath S, Pillay K, Maity A (2016) Rapid and efficient removal of fluoride ions from aqueous solution using a polypyrrole coated hydrous tin oxide nanocomposite. J Colloid Interface Sci 476:103–118.  https://doi.org/10.1016/j.jcis.2016.05.013 CrossRefPubMedGoogle Scholar
  299. Park JW, Park SJ, Kwon OS, Lee C, Jang J (2014) Polypyrrole nanotube embedded reduced graphene oxide transducer for field-effect transistor-type H2O2 biosensor. Anal Chem 86:1822–1828.  https://doi.org/10.1021/ac403770x CrossRefPubMedGoogle Scholar
  300. Patil MR, Shrivastava VS (2016) Adsorptive removal of methylene blue from aqueous solution of polyaniline-nickel ferrite nanocomposite: a kinetic approach. Desalin Water Treat 57:5879–5887.  https://doi.org/10.1080/19443994.2015.1004594 CrossRefGoogle Scholar
  301. Patra BN, Majhi D (2015) Removal of anionic dyes from water by potash alum doped polyaniline: investigation of kinetics and thermodynamic parameters of adsorption. J Phys Chem B 119:8154–8164.  https://doi.org/10.18021/acs.jpcb.5b00535
  302. Pauliukaite R, Brett CMA (2008) Poly(neutral red): electrosynthesis, characterization, and application as a redox mediator. Electroanalysis 20:1275–1285.  https://doi.org/10.1002/elan.200804217 CrossRefGoogle Scholar
  303. Pauliukaite R, Selskiene A, Malinauskas A, Brett CMA (2009) Electrosynthesis and characterisation of poly(safranine T) electroactive polymer films. Thin Solid Films 517:5435–5441.  https://doi.org/10.1016/j.tsf.2009.01.092 CrossRefGoogle Scholar
  304. Pei FB, Wang P, Ma EH, Yu HX, Gao CX, Yin HH, Li YY, Liu Q, Dong YH (2018) A sandwich-type amperometric immunosensor fabricated by Au@Pd ND/Fe2+-CS/PPy NTs and Au NPs/NH2-GS to detect CEA sensitively via two detection methods. Biosens Bioelectron 122:231–238.  https://doi.org/10.1016/j.bios.2018.09.065 CrossRefPubMedGoogle Scholar
  305. Pei FB, Wang P, Ma EH, Yang QS, Yu HX, Liu J, Yin HH, Li YY, Liu Q, Dong YH (2019) A sensitive label-free immunosensor for alpha fetoprotein detection using platinum nanodendrites loaded on functional MoS2 hybridized polypyrrole nanotubes as signal amplifier. J Electroanal Chem 835:197–204.  https://doi.org/10.1016/j.jelechem.2019.01.037 CrossRefGoogle Scholar
  306. Pen JY, Huang G (2019) Selective photocatalytic degradation of tetracycline by metal-free heterojunction surface imprinted photocatalyst base on magnetic fly ash. Inorg Chem Commun 106:202–209.  https://doi.org/10.1016/j.inoche.2019.06.012 CrossRefGoogle Scholar
  307. Peng YG, Ji JL, Zhang YL, Wan HX, Chen DJ (2014) Preparation of poly(m-phenylenediamine)/ZnO composites and their photocatalytic activities for degradation of CI Acid Red 249 under UV and visible light irradiations. Environ Prog Sustain Energy 33:123–130.  https://doi.org/10.1002/ep.11764 CrossRefGoogle Scholar
  308. Phan TTV, Bharathiraja S, Nguyen VT, Moorthy MS, Manivasagan P, Lee KD, Oh J (2017) Polypyrrole–methylene blue nanoparticles as a single multifunctional nanoplatform for near-infrared photo-induced therapy and photoacoustic imaging. RSC Adv 7:35027–35037.  https://doi.org/10.1039/c7ra02140b CrossRefGoogle Scholar
  309. Pirkarami A, Olya ME, Limaee NY (2013) Decolorization of azo dyes by photo electro adsorption process using polyaniline coated electrode. Prog Org Coat 76:682–688.  https://doi.org/10.1016/j.porgcoat.2012.12.014 CrossRefGoogle Scholar
  310. Podasca VE, Buruiana TB, Buruiana EC (2019) Photocatalytic degradation of Rhodamine B dye by polymeric films containing ZnO, Ag nanoparticles and polypyrrole. J Photochem Photobiol A: Chem 371:188–195.  https://doi.org/10.1016/j.jphotochem.2018.11.016 CrossRefGoogle Scholar
  311. Ponprapakaran K, Subramani RH, Baskaran R, Anbarasan R (2017) Synthesis, characterization, catalytic activity and solar cell study of poly (aniline-co-thymol blue)/metal oxide nanocomposites. Synth Met 232:144–151.  https://doi.org/10.1016/j.synthmet.2017.07.018 CrossRefGoogle Scholar
  312. Poorarjmand S, Razi MK, Mahjoub AR, Khosravi M (2019) Improving photocatalytic properties of Zn0.95Ni0.04Co0.01O modified by PANI. J Nanoanalysis 6:129–137.  https://doi.org/10.22034/jna.2019.667136 CrossRefGoogle Scholar
  313. Prasad AR, Joseph A (2017) Synthesis, characterization and investigation of methyl orange dye removal from aqueous solutions using waterborne poly vinyl pyrrolidone (PVP) stabilized poly aniline (PANI) core–shell nanoparticles. RSC Adv 7:20960–20968.  https://doi.org/10.1039/c7ra01790a CrossRefGoogle Scholar
  314. Prokeš J, Varga M, Vrňata M, Valtera S, Stejskal J, Kopecký D (2019) Nanotubular polypyrrole: reversibility of protonation/deprotonation cycles and long-term stability. Eur Polym J 115:290–297.  https://doi.org/10.1016/j.eurpolymj.2018.03.037 CrossRefGoogle Scholar
  315. Qi FF, Qian LL, Liu JJ, Li XQ, Lu LG, Xu Q (2016) A high throughput mat-based micro-solid extraction for the determination of cationic dyes in wastewater. J Chromatogr A 1460:24–32.  https://doi.org/10.1016/j.chroma.2016.07.020 CrossRefPubMedGoogle Scholar
  316. Radoičić M, Šaponjić Z, Janković IA, Ćirić-Marjanović G, Ahrenkiel P, Comora MI (2013) Improvments to the photocatalytic efficiency of polyaniline modified TiO2. Appl Catal B: Environ 136:133–139.  https://doi.org/10.1016/j.apcatb.2013.01.007 CrossRefGoogle Scholar
  317. Radoičić M, Ćirić-Marjanović G, Spasojević V, Ahrenkiel P, Mitrić M, Novaković T, Šaponjić Z (2017) Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. Appl Catal B: Environ 217:155–166.  https://doi.org/10.1016/j.apcatb.2017.05.023 CrossRefGoogle Scholar
  318. Rafiqi FA, Majid K (2017) Sequestration of methylene blue (MB) dyes from aqueous solution using polyaniline and polyaniline-nitroprusside composite. J Mater Sci 52:6506–6524.  https://doi.org/10.1007/s10853-017-0886-z CrossRefGoogle Scholar
  319. Rakić A, Bajuk-Bogdanović D, Mojović M, Ćirić-Marjanović G, Milojević-Rakić M, Mentus S, Marjanović B, Trchová M, Stejskal J (2011) Oxidation of aniline in dopant-free template-free dilute reaction media. Mater Chem Phys 127:501–510.  https://doi.org/10.1016/j.matchemphys.2011.02.047 CrossRefGoogle Scholar
  320. Rasmussen SC (2018) Revisiting history of synthetic polymers: critiques and new insights. Ambix 65:356–372.  https://doi.org/10.1080/0002690.2018.1512775 CrossRefPubMedGoogle Scholar
  321. Razak S, Nawi MA, Haitham K (2014) Fabrication, characterization and application of a reusable immobilized TiO2-PANI photocatalyst plate for the removal of reactive red 4 dye. Appl Surf Sci 319:90–98.  https://doi.org/10.1016/j.apsusc.2014.07.049 CrossRefGoogle Scholar
  322. Reddy KR, Karthik KV, Prasad SBB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructure titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174.  https://doi.org/10.1016/j.poly.2016.08.029 CrossRefGoogle Scholar
  323. Ren L, Li K, Chen XF (2009) Soft template method to synthesize polyaniline microtubes doped with methyl orange. Polym Bull 63:15–21.  https://doi.org/10.1007/s00289-009-0076-5 CrossRefGoogle Scholar
  324. Ren YY, Lin Z, Mao XW, Tian WD, Voorhis TV, Hatton TA (2018) Superhydrophobic, surfactant-doped, conducting polymers for electrochemically reversible adsorption of organic contaminants. Adv Funct Mater 28:1801466.  https://doi.org/10.1002/adfm.201801466 CrossRefGoogle Scholar
  325. Riaz U, Ashraf SM, Aqib M (2014) Macrowave-assisted degradation of acid orange using a conjugated polymer, polyaniline, as catalyst. Arab J Chem 7:79–86.  https://doi.org/10.1016/j.arabjc.2013.07.001 CrossRefGoogle Scholar
  326. Riaz U, Ashraf SNM, Raza R, Kohli K, Kashyap J (2016) Sonochemical facile synthesis of self-assembled poly(o-phenylenediamine)/cobalt ferrite nanohybrid with enhanced photocatalytic activity. Ind Eng Chem Res 55(22):6300–6309CrossRefGoogle Scholar
  327. Riede A, Helmstedt M, Sapurina I, Stejskal J (2002) In situ polymerized polyaniline films 4. Film formation in dispersion polymerization of aniline. J Colloid Interface Sci 248:413–418.  https://doi.org/10.1006/jcis.2001.8197 CrossRefPubMedGoogle Scholar
  328. Rounaghi GH, Razavipanah I, Vakili-Zarch MH, Ghanei-Motlagh M, Salavati MR (2015) Electrochemical synthesis of Alizarin Red S doped polypyrrole and its applications in designing a novel silver (I) potentiometric and voltammetric sensor. J Mol Liq 211:210–216.  https://doi.org/10.1016/j.molliq.2015.06.066 CrossRefGoogle Scholar
  329. Roy M, Mondal A, Mondal A, Das A, Mukherjee D (2019) Polyaniline supported palladium catalyzed reductive degradation dyes under mild condition. Curr Green Chem 6:69–75.  https://doi.org/10.2174/2213346106666190130101109 CrossRefGoogle Scholar
  330. Rudajevová A, Varga M, Prokeš J, Kopecká J, Stejskal J (2015) Thermal properties of conducting polypyrrole nanotubes. Acta Phys Polonica A 128:730–736.  https://doi.org/10.12693/aphyspola.128.730 CrossRefGoogle Scholar
  331. Runsewe D, Betancourt T, Irvin JA (2019) Biomedical application of electroactive polymers in electrochemical sensors: a review. Materials 12:2629.  https://doi.org/10.3390/ma12162629 CrossRefPubMedCentralGoogle Scholar
  332. Saghatchi H, Ansari R (2018) Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions. Separ Sci Technol 53:2486–2499.  https://doi.org/10.1080/01496395.2018.1459701 CrossRefGoogle Scholar
  333. Saha S, Chaudhary N, Mittal H, Gupta G, Khanuja M (2019) Inorganic–organic nanohybrid of MoS2-PANI for advance photocatalytic application. Int Nano Lett 9:127–139.  https://doi.org/10.1007/s40089-019-0267-5 CrossRefGoogle Scholar
  334. Sahnoun S, Boutahala M, Finqueneisel G, Zimny T (2018) Adsorption studies of an azo dye using polyaniline coated calcinated layered hydroxides. Desalin Water Treat 129:255–265.  https://doi.org/10.5004/dwt.2018.22794 CrossRefGoogle Scholar
  335. Sahu K, Rahamn KH, Kar AK (2019) Synergic effect of polyaniline and ZnO to enhance the photocatalytic activity of their nanocomposite. Mater Res Express 9:095304.  https://doi.org/10.1088/2053-1591/ab2c5f CrossRefGoogle Scholar
  336. Salahuddin N, El-Daly H, El Sharkawy RG, Nasr BT (2018) Synthesis and efficacy of PPy/CS/GO nanocomposites for adsorption of ponceau 4R dye. Polymer 146:291–303.  https://doi.org/10.1016/j.polymer.2018.04.053 CrossRefGoogle Scholar
  337. Salavati H, Kohestani T (2013) Preparation, characterization and photochemical degradation of dyes under UV light irradiation by inorganic–organic nanocomposite. Mater Sci Semiconduct Process 16:1904–1911.  https://doi.org/10.1016/j.mssp.2013.07.014 CrossRefGoogle Scholar
  338. Salehi-Barbarsad F, Derikvand E, Razaz M, Yousefi R, Shirmardi A (2019) Heavy metal removal by using ZnO/organic and ZnO/inorganic nanocomposite heterostructures. Int J Environ Anal Chem.  https://doi.org/10.1080/03067319.2019.1639685 CrossRefGoogle Scholar
  339. Salem MA (2010) The role of polyaniline salts in the removal of direct blue 78 from aqueous solution: a kinetic study. React Funct Polym 70:707–714.  https://doi.org/10.1016/j.reactfunctpolym.2010.07.001 CrossRefGoogle Scholar
  340. Salem et al (2009) Salem MA, Al-Ghonemiy AF, Zaki AB (2009) Photocatalytic degradation of Allura red and Quinoline yellow with polyaniline/TiO2 nanocomposite. Appl Catal B: Environ 91:59–66.  https://doi.org/10.1016/j.apcatb.2008.05.027 CrossRefGoogle Scholar
  341. Salem MA, Elsharkawy RG, Hablas MF (2016) Adsorption of brilliant green dye by polyaniline/silver nanocomposite: kinetic, equilibrium, and thermodynamic studies. Eur Polym J 75:577–590.  https://doi.org/10.1016/j.eurpolymj.2015.12.027 CrossRefGoogle Scholar
  342. Samai B, Bhattacharya SC (2018) Conducting polymer supported cerium oxide nanoparticle: enhanced photocatalytic activity for waste water treatment. Mater Chem Phys 220:171–181.  https://doi.org/10.1016/j.matchemphys.2018.08.50 CrossRefGoogle Scholar
  343. Sananmuang R, Chaiyasith WC, Wongjan K (2017) Adsorption of Reactive Dyes Red 195, Blue 222, and Yellow 145 in solution with polyaniline-chitosan membrane using batch reactor. Key Eng Mater 751:713–718.  https://doi.org/10.4028/www.scientific.net/KEM.751.713 CrossRefGoogle Scholar
  344. Sandikly N, Kassir M, El Jamal M, Takache H, Arnoux P, Mohk S, Al Iskandarani M, Roques-Carmes T (2019) Comparison of the toxicity of waters containing initially sulfaquinoxaline after photocatalytic treatment by TiO2 and polyaniline TiO2. Environ Technol  https://doi.org/10.1080/09593330.2019.1630485 CrossRefPubMedGoogle Scholar
  345. Sangareswari M, Sundaram MM (2017) Development of efficiency improved polymer-modified TiO2 for the photocatalytic degradation of an organic dye from waste water environment. Appl Water Sci 7:1781–1790.  https://doi.org/10.1007/s13201-015-0351-6 CrossRefGoogle Scholar
  346. Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57:1295–1325.  https://doi.org/10.1002/pi.2476 CrossRefGoogle Scholar
  347. Sapurina I, Riede A, Stejskal J (2001) In-situ polymerized polyaniline films 3. Film formation. Synth Met 123:503–507.  https://doi.org/10.1016/s0379-6779(01)00349-6 CrossRefGoogle Scholar
  348. Sapurina I, Osadchev AYu, Volchek BZ, Trchová M, Riede A, Stejskal J (2002) In-situ polymerized polyaniline films 5. Brush like chain ordering. Synth Met 129:29–37.  https://doi.org/10.19016/S0379-6779(02)00036-X CrossRefGoogle Scholar
  349. Sapurina I, Stejskal J, Šeděnková I, Trchová M, Kovářová J, Hromádková J, Kopecká J, Cieslar M, Abu El-Nasr A, Ayad MM (2016) Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues. Synth Met 214:14–22.  https://doi.org/10.1016/j.synthmet.2016.01.009 CrossRefGoogle Scholar
  350. Sapurina I, Li Y, Alekseeva E, Bober P, Trchová M, Morávková Z, Stejskal J (2017) Polypyrrole nanotubes: the tuning of morphology and conductivity. Polymer 113:247–258.  https://doi.org/10.1016/j.polymer.2017.02.064 CrossRefGoogle Scholar
  351. Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033.  https://doi.org/10.1016/j.molliq.2016.06.074 CrossRefGoogle Scholar
  352. Sarkar K, Deb K, Debnath A, Bera A, Debnath A, Saha B (2018) Polaron localization in polyaniline through methylene blue dye interaction for tuned charge transport and optical properties. Colloid Polym Sci 296:1927–1934.  https://doi.org/10.1007/s00396-018-4419-3 CrossRefGoogle Scholar
  353. Saugo M, Brugnoni LI, Flamani DO, Saidman SB (2018) Immobilization of antibacterial metallic cations (Ga31, Zn2+ and Co2+) in a polypyrrole coating formed on Nitinol. Mater Sci Eng C 86:62–69.  https://doi.org/10.1016/j.msec.2018.01.009 CrossRefGoogle Scholar
  354. Sayyah SM, Essawy AA, El-Nggar AM (2015) Kinetic studies and grafting mechanism for methyl aniline derivatives onto chitosan: highly adsorptive copolymers for dye removal fro aqueous solutions. React Funct Polym 96:50–60.  https://doi.org/10.1016/j.reactfunctpolym.2015.07.005 CrossRefGoogle Scholar
  355. Sazou D, Deshpande PP (2017) Conducting polyaniline nanocomposite-based paints for corrosion protection of steel. Chem Pap 71:459–487.  https://doi.org/10.1007/s11696-016-0044-0 CrossRefGoogle Scholar
  356. Selvin SSP, Kumar AG, Sarala L, Rajaram R, Sathiyan A, Merlin JP, Lydia IS (2018) Photocatalytic degradation of rhodamine B using zinc oxide activated charcoal polyaniline nanocomposite and its survival assessment using aquatic animal model. ACS Sustain Chem Eng 6:258–267.  https://doi.org/10.1021/acssuschemeng.7b02335 CrossRefGoogle Scholar
  357. Shabandokht M, Binaeian E, Tayebi HA (2016) Adsorption of food dye Acid red 18 onto polyaniline-modified rice husk composite: isotherm and kinetic analysis. Desalin Water Treat 57:27638–27650.  https://doi.org/10.1080/19443994.2016.1172982 CrossRefGoogle Scholar
  358. Shah A, Akhlaq S, Sayed M, Bilal S, Ali N (2018) Synthesis and characterization of polyaniline-zirconium dioxide and polyaniline-cerium dioxide composites with enhanced photocatalytic degradation of rhodamine B dye. Chem Pap 72:2523–2538.  https://doi.org/10.1007/s11696-018-0494-7 CrossRefGoogle Scholar
  359. Shahriman MS, Zain NNM, Mohamad S, Manan NSA, Yaman SM, Asman S, Raoov M (2018) Polyaniline modified magnetic nanoparticles coated with dicationic ionic liquid for effective removal of rhodamine B (RB) from aqueous solution. RSC Adv 8:33180–33192.  https://doi.org/10.1039/c8ra06687f CrossRefGoogle Scholar
  360. Shanehsaz M, Seidi S, Ghorbani Y, Shoja SMR (2015) Polypyrrole-coated magnetic nanoparticles as an efficient adsorbent for RB19 synthetic textile dye: removal and kinetic study. Spectrochim Acta A 149:481–486.  https://doi.org/10.1016/j.saa.2015.04.114 CrossRefGoogle Scholar
  361. Shang M, Wang WZ, Sun SM, Ren J, Zhou L, Zhang L (2009) Efficient visible light-induced photocatalytic degradation of contaminant by spindle-like PANI/BiVO4. J Phys Chem C 113:20228–20233.  https://doi.org/10.1021/jp9067729 CrossRefGoogle Scholar
  362. Sharma G, Naushad M, Kumar A, Devi S, Khan MR (2015) Lanthanum/cadmium/polyaniline bimetallic nanocomposite for the photodegradation of organic pollutant. Iran Polym J 24:1003–1013.  https://doi.org/10.1007/s13726-015-0388-2 CrossRefGoogle Scholar
  363. Sharma V, Rekha P, Mohanty P (2016) Nanoporous hypercrosslinked polyaniline: an efficient adsorbent for the adsorptive removal of cationic and anionic dyes. J Mol Liq 222:1091–1100.  https://doi.org/10.1016/j.molliq.2016.07.130 CrossRefGoogle Scholar
  364. Shen JJ, Shahid S, Amura I, Sarihan A, Tian M (2018) Enhanced adsorption of cationic and anionic dyes from aqueous solutions by polyacid doped polyaniline. Synth Met 245:151–159.  https://doi.org/10.1016/j.synthmet.2018.08.015 CrossRefGoogle Scholar
  365. Shi MW, Zhang YY, Bai MD, Li BM (2017) Facile fabrication of polyaniline with coral-like nanostructure as electrode material for supercapacitors. Synth Met 233:74–78.  https://doi.org/10.1016/j.synthmet.2017.09.007 CrossRefGoogle Scholar
  366. Shi MW, Bai MD, Li BM (2018) Acid Red 27-crosslinked polyaniline with nanofiber structure as electrode material for supercapacitors. Mater Lett 212:259–262.  https://doi.org/10.1016/j.matlet.2017.10.107 CrossRefGoogle Scholar
  367. Shirmardi A, Teridi MAT, Azimi HR, Basirun WJ, Jamali-Sheini F, Yousefi R (2018) Enhanced photocatalytic performance of ZnSe/PANI nanocomposites for degradation of organic and inorganic pollutants. Appl Surf Sci 462:730–738.  https://doi.org/10.1016/j.appsusc.2018.06.252 CrossRefGoogle Scholar
  368. Silvestri S, Ferreira CD, Oliveira V, Varejão JMTB, Labrincha JA, Tobaldi DM (2019) Synthesis of PPy-ZnO composite used as photocatalyst for the degradation of diclofenac under simulated solar irradiation. J Photochem Photobiol A: Chem 375:261–269.  https://doi.org/10.1016/j.jphotochem.2019.02.034 CrossRefGoogle Scholar
  369. Singh NB, Agarwal S, Rachna KM (2019) Methylene blue dye removal from water by nickel ferrite polyaniline nanocomposite. J Sci Ind Res 78:118–121. http://nopr.niscair.res.in/handle/123456789/45760
  370. Sivakumar V, Suresh R, Giribabu K, Narayanan V (2019) Characterization and visible light driven photocatalytic activity of (M = Bi, La) MVO4@poly(o-phenylenediamine) nanocomposite. Mater Sci Eng B 240:41–48.  https://doi.org/10.1016/j.msceb.2019.01.011 CrossRefGoogle Scholar
  371. Škodová J, Kopecký D, Vrňata M, Varga M, Prokeš J, Cieslar M, Bober P, Stejskal J (2013) Polypyrrole–silver composites prepared by the reduction of silver ions with polypyrrole nanotubes. Polym Chem 4:3610–3616.  https://doi.org/10.1039/c3py00250k CrossRefGoogle Scholar
  372. Sobhani-Nasab A, Behpour M, Rahimi-Nasrabadi M, Ahmadi F, Pourmasoud S, Sedighi F (2019) Preparation, characterization and investigation of sonophotocatalytic activity of thulium titanate/polyaniline nanocomposites in degradation of dyes. Ultrason Sonochem 50:46–55.  https://doi.org/10.1016/j.ultsonch.2018.08.021 CrossRefPubMedGoogle Scholar
  373. Soltani H, Belmokhtar A, Zeggai FZ, Benyoucef A, Bousalem S, Bachari K (2019) Copper(II) removal from aqueous solutions by PANI-clay hybrid material: fabrication, characterization, adsorption, kinetics study. J Inorg Organomet Polym Mater 29:841–851.  https://doi.org/10.1007/ss10904-018-01058-z CrossRefGoogle Scholar
  374. Song XF, Qin JT, Li TT, Liu G, Xia XX, Li YS, Liu Y (2019) Efficient construction and enriched adsorption-photocatalytic activity of PVA/PANI/TiO2 recyclable hydrogel by electron beam radiation. J Appl Polym Sci 136:48516.  https://doi.org/10.1002/app.48516 CrossRefGoogle Scholar
  375. Sousa MM, Melo MJ, Parola AJ, Morris PJT, Rzepa HS, de Melo JSS (2008) A study in mauve: unveiling Perkin’s dye in historic samples. Chem Eur J 14:8507–8513.  https://doi.org/10.1002/chem.200800718 CrossRefPubMedGoogle Scholar
  376. Spiridon MCS, Aissou K, Mumtaz M, Brochon C, Cloutet E, Fleury G, Hadziioannou G (2018) Surface relief gratings formed by microphase-separated disperse red 1 acrylate-containing diblock copolymers. Polymer 137:378–384.  https://doi.org/10.1016/j.polymer.2018.01.032 CrossRefGoogle Scholar
  377. Stejskal J (2001) Colloidal dispersions of conducting polymers. J Polym Mater 18:225–258 (WOS: 000171631800001) Google Scholar
  378. Stejskal J (2013) Conducting polymer–silver composites. Chem Pap 67:814–848.  https://doi.org/10.2478/s11696-012-0304-6 CrossRefGoogle Scholar
  379. Stejskal J (2015) Polymers of phenylenediamines. Prog Polym Sci 41:1–31.  https://doi.org/10.1016/j.progpolymsci.2014.10.007 CrossRefGoogle Scholar
  380. Stejskal J (2017) Conducting polymer hydrogels. Chem Pap 71:269–291.  https://doi.org/10.1007/s11696-016-0072-9 CrossRefGoogle Scholar
  381. Stejskal J (2018) Strategies towards the control of one-dimensional polypyrrole morphology and conductivity. Polym Int 67:1461–1465.  https://doi.org/10.1002/pi.5654 CrossRefGoogle Scholar
  382. Stejskal J, Bober P (2018) Conducting polymer colloids, hydrogels, and cryogels: common start ro various destinations. Colloid Polym Sci 296:989–994.  https://doi.org/10.1007/s00396-018-4303-1 CrossRefGoogle Scholar
  383. Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74:857–867.  https://doi.org/10.1351/pac200274050857 CrossRefGoogle Scholar
  384. Stejskal J, Sapurina I (2005) Polyaniline: thin films and colloidal dispersions. Pure Appl Chem 77:815–826.  https://doi.org/10.1351/pac200577050815 CrossRefGoogle Scholar
  385. Stejskal J, Trchová M (2018) Conducting polypyrrole nanotubes: a review. Chem Pap 72:1563–1595.  https://doi.org/10.1007/s11696-018-0394x CrossRefGoogle Scholar
  386. Stejskal J, Sapurina I, Prokeš J, Zemek J (1999) In-situ polymerized polyaniline films. Synth Met 105:195–202.  https://doi.org/10.1016/s379-6779(99)00105-8 CrossRefGoogle Scholar
  387. Stejskal J, Trchová M, Prokeš J, Sapurina I (2001) Brominated polyaniline. Chem Mater 13:4083–4086.  https://doi.org/10.1021/cm011059n CrossRefGoogle Scholar
  388. Stejskal J, Hlavatá D, Holler P, Trchová M, Prokeš J, Sapurina I (2004a) Polyaniline prepared in the presence of various acids: a conductivity study. Polym Int 53:294–300.  https://doi.org/10.1002/pi.1406 CrossRefGoogle Scholar
  389. Stejskal J, Trchová M, Ananieva IA, Janča J, Prokeš J, Fedorova S, Sapurina I (2004b) Poly(aniline-co-pyrrole): powders, films and colloids. Thermophoretic mobility of colloidal particles. Synth Met 146:29–36.  https://doi.org/10.1016/j.synthmet.2004.06.013 CrossRefGoogle Scholar
  390. Stejskal J, Prokeš J, Trchová M (2008a) Reprotonation of polyaniline: a route to various conducting polymer materials. React Funct Polym 68:1355–1361.  https://doi.org/10.1016/j.reactfunctpolym.2008.06.012 CrossRefGoogle Scholar
  391. Stejskal J, Sapurina I, Trchová M, Konyushenko EN (2008b) Oxidation of aniline: polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 41:3530–3536.  https://doi.org/10.1021/ma702601q CrossRefGoogle Scholar
  392. Stejskal J, Trchová M, Blinova NV, Konyushenko EN, Reynaud S, Prokeš J (2008c) The reaction of polyaniline with iodine. Polymer 49:180–185.  https://doi.org/10.1016/j.polymer.2007.11.023 CrossRefGoogle Scholar
  393. Stejskal J, Sapurina I, Trchová M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481.  https://doi.org/10.1016/j.progpolymsci.2010.07.006 CrossRefGoogle Scholar
  394. Stejskal J, Sapurina I, Trchová M, Šeděnková I, Kovářová J, Kopecká J, Prokeš J (2015) Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonization. Chem Pap 69:1341–1349.  https://doi.org/10.1515/chempap-2015-0152 CrossRefGoogle Scholar
  395. Stejskal J, Trchová M, Bober P, Morávková Z, Kopecký D, Vrňata M, Prokeš J, Varga M, Watzlová E (2016) Polypyrrole salts and bases: superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv 6:88382–88391.  https://doi.org/10.1039/c6ra19461c CrossRefGoogle Scholar
  396. Stejskal J, Bober P, Trchová M, Kovalcik A, Hodan J, Htromádková J, Prokeš J (2017) Polyaniline cryogels supported with poly(vinyl alcohol): soft and conducting. Macromolecules 50:972–978.  https://doi.org/10.1021/acs.macromol.6b02526 CrossRefGoogle Scholar
  397. Stejskal J, Acharya U, Bober P, Hajná M, Trchová M, Mičušík M, Omastová M, Pašti I, Gavrilov N (2019) Surface modification of tungsten disulfide with polypyrrole for enhancement of the conductivity and its impact on hydrogen evolution reaction. Appl Surf Sci 492:497–503.  https://doi.org/10.1016/j.apsusc.2019.06.175 CrossRefGoogle Scholar
  398. Stoikov DI, Porfirjeva AV, Shurpik DN, Stoikov II, Evtyugin GA (2019) Electrochemical DNA sensors on the basis of electropolymerized thionine and Azure B with addition of pillar[5]arene as an electron transfer mediator. Russ Chem Bull 68:431–437.  https://doi.org/10.1007/s11172-019-2404-8 CrossRefGoogle Scholar
  399. Suba V, Rathika G (2016) Novel adsorbents for the removal of dyes and metals from aqueous solution—a review. J Adv Phys 5:277–294.  https://doi.org/10.1166/jap.2016.1269 CrossRefGoogle Scholar
  400. Subramaniam MN, Goh PS, Lau WJ, Ismail AF, Gursoy M, Karaman M (2019) Synthesis of Titania nanotubes/polyaniline via rotating bed-plasma enhanced chemical vapor deposition for enhanced visible light degradation. Appl Surf Sci 484:740–750.  https://doi.org/10.1016/j.apsusc.2019.04.118 CrossRefGoogle Scholar
  401. Sukchuay T, Kanatharana P, Wannapob R, Thavarungkul P, Bunkoed O (2015) Polypyrrole/silica/magnetite nanoparticles as a sorbent for the extraction of sulfonamides from water samples. J Sep Sci 38:3921–3927.  https://doi.org/10.1002/jssc.201500766 CrossRefPubMedGoogle Scholar
  402. Sultana I, Rahman MM, Wang JZ, Wang CY, Wallace GG (2012a) All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochim Acta 83:209–215.  https://doi.org/10.1016/j.electacta.2012.08.043 CrossRefGoogle Scholar
  403. Sultana I, Rahman MM, Wang JZ, Wang CY, Wallace GG, Liu HK (2012b) Indigo carmine (IC) doped polypyrrole (PPy) as a free-standing polymer electrode for lithium secondary battery application. Solid State Ionics 215:29–35.  https://doi.org/10.1016/j.ssi.2012.03.034 CrossRefGoogle Scholar
  404. Sun XF, Sun QH, Gong QH, Gao TT, Zhou GW (2019a) Double-shell structural polyaniline-derived TiO2 hollow spheres for enhanced photocatalytic activity. Transit Met Chem 44:555–564.  https://doi.org/10.1007/s11243-019-00312-8 CrossRefGoogle Scholar
  405. Sun BJ, Ma WJ, Wang N, Xu P, Zhang LJ, Wang BN, Zhao HH, Lin KYA, Du YC (2019b) Polyaniline: a new metal-free-catalyst for peroxomonosulfate activation with highly efficient and durable removal of organic pollutants. Environ Sci Technol 53:9771–9780.  https://doi.org/10.1021/acs.est.9b03374 CrossRefPubMedGoogle Scholar
  406. Supriya S, Palanisamy PN (2016) Adsorptive removal of acid orange 7 from industrial effluents using activated carbon and conducting polymer composite – a comparative study. Ind J Chem Technol 23:506–512 (WOS: 000392458700008) Google Scholar
  407. Supriya S, Palanisamy PN (2017) Preparation, characterization and removal of hazardous reactive violet dye from aqueous solution using activated carbon and electroactive conducting polymer—a comparative study. Desalin Water Treat 78:281–291.  https://doi.org/10.5004/dwt.2017.20746 CrossRefGoogle Scholar
  408. Sushma C, Kumar SG (2017) Advancements in the zinc oxide nanomaterials for efficient photocatalysis. Chem Pap 71:2023–2042.  https://doi.org/10.1007/s11696-017-0217-5 CrossRefGoogle Scholar
  409. Tahir N, Bhatti HN, Iqbal M, Noreen S (2017) Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption. Int J Biol Macromol 94:210–220.  https://doi.org/10.1016/j.ijbiomac.2016.10.013 CrossRefPubMedGoogle Scholar
  410. Talikowska M, Fu XX, Lisak G (2019) Application of conducting polymers to wound care and skin tissue engineering: a review. Biosens Bioelectron 135:50–63.  https://doi.org/10.1016/j.bios.2019.04.001 CrossRefPubMedGoogle Scholar
  411. Tang TT, Li K, Dai L, Zhou S, Zhang HB, Jia JP (2019a) Visible-light driven conversion of pollutants into hydrogen and electricity based on a polyaniline dynamic electrode. J Electrochem Soc 166:F399–F405.  https://doi.org/10.1149/2.0831906jes CrossRefGoogle Scholar
  412. Tang YH, Zhou P, Wang K, Lin F, Lai JP, Chao YG, Li HX, Guo SJ (2019b) BiOCl/ultrathin polyaniline core/shell nanosheets with a sensitization mechanism for efficient visible-light-driven photocatalysis. Sci China Mater 62:95–102.  https://doi.org/10.1007/s40843-018-9284-0 CrossRefGoogle Scholar
  413. Tanwar R, Mandal UK (2019) Photocatalytic activity of Ni0.5ZnO0.5 Fe2O4@polyaniline-decorated BiOCl for azo dye degradation under visible light-integrated role and degradation kinetics interpretation. RSC Adv 9:8977–8993.  https://doi.org/10.1039/c9ra00548j CrossRefGoogle Scholar
  414. Tanwar R, Kumar S, Mandal UK (2017) Photocatalytic activity of PANI/Fe0 doped BiOCl under visible light-degradation of Congo red dye. J Photochem Photobiol A-Chem 333:105–116.  https://doi.org/10.1016/j.jphotochem.2016.10.022 CrossRefGoogle Scholar
  415. Tanzifi M, Karimipour M, Mirchenari S (2016) Removal of Congo red anionic dye from aqueous solution using polyaniline/TiO2 and polypyrrole/TiO2 nanocomposites: isotherm, kinetic, and thermodynamic studies. Int J Eng, Trans C 29:1659–1669.  https://doi.org/10.5829/idosi.ije.2016.29.12c.04 CrossRefGoogle Scholar
  416. Tanzifi M, Hosseini SH, Kiadehi AD, Olazar M, Karimipour K, Rezaiemehr R, Ali I (2017) Artificial neural network optimization for methyl orange adsorption onto polyaniline nano-adsorbent: kinetic, isotherm and thermodynamic studies. J Mol Liq 244:189–200.  https://doi.org/10.1016/j.molliq.2017.08.122 CrossRefGoogle Scholar
  417. Tanzifi M, Yaraki MT, Kiadehi AD, Hosseini SH, Olazar M, Bharti AK, Agarwal S, Gupta VK, Kazemi A (2018a) Adsorption of Amide Black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: experimental investigation and artificial neural network modeling. J Colloid Interface Sci 510:246–261.  https://doi.org/10.1016/j.jcis.2017.09.055 CrossRefPubMedGoogle Scholar
  418. Tanzifi M, Yaraki MT, Karami M, Karimi S, Kiadehi AD, Karimipour K, Wang SB (2018b) Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites. J Colloid Interface Sci 519:154–173.  https://doi.org/10.1016/j.jcis.2018.02.059 CrossRefPubMedGoogle Scholar
  419. Tanzifi M, Esmizadeh E, Bazgir H, Nazari A, Vahidifar A (2019) Adsorption of methylene blue dye from aqueous solution using polyaniline/xanthan gum nanocomposite: kinetic and isotherm studies. J Polym Compos 7:17–26.Google Scholar
  420. Tavoli F, Alizadeh N (2013) Optical ammonia gas sensor based on nanostructured dye-doped polypyrrole. Sens Actuat B-Chem 176:761–767.  https://doi.org/10.1016/j.snb.2012.09.013 CrossRefGoogle Scholar
  421. Tavoli F, Alizadeh N (2014) In-situ UV-vis spectroelectrochemical study of dye doped nanostructure polypyrrole as electrochromic film. J Electroanal Chem 720–721:128–133.  https://doi.org/10.1016/j.jelechem.2014.03.022 CrossRefGoogle Scholar
  422. Tayebi HA, Dalirandeh Z, Rad AS, Mirabi A, Binaeian E (2016) Synthesis of polyaniline/Fe3O4 magnetic nanoparticles for removal of reactive red 198 from textile waste water: kinetic, isotherm, and thermodynamic studies. Desalin Water Treat 57:22551–22563.  https://doi.org/10.1080/19943994.2015.113323 CrossRefGoogle Scholar
  423. Teklu T, Wangatia LM, Alemayehu E (2019) Removal of Pb(II) from aqueous media using adsorption onto polyaniline coated sisal fibers. J Vinyl Additive Technol 25:189–197.  https://doi.org/10.1002/vnl.21652 CrossRefGoogle Scholar
  424. Tie J, Fang X, Wang X, Zhang Y, Gu T, Deng S, Li G, Tang D (2017) Adsorptive removal of a reactive azo dye using polyaniline-intercalated bentonite. Pol J Environ Stud 26(3):1259–1268.  https://doi.org/10.15244/pjoes/67554 CrossRefGoogle Scholar
  425. Torabinejad A, Nasirizadeh N, Yazdanshenas ME, Tayebi HA (2017) Synthesis of conductive polymer-coated mesoporous MCM-41 for textile dye removal from aqueous media. J Nanostruct Chem 7:217–229.  https://doi.org/10.1007/s40097-017-0232-7 CrossRefGoogle Scholar
  426. Trchová M, Stejskal J (2011) Polyaniline: the infrared spectroscopy of conducting polymer nanotubes (IUPAC technical report). Pure Appl Chem 83:1803–1817.  https://doi.org/10.1351/pac-rep-10-02-01 CrossRefGoogle Scholar
  427. Trchová M, Stejskal J (2018) Resonance Raman spectroscopy of conducting polypyrrole nanotubes: disordered surface versus ordered body. J Phys Chem A 122:9298–9306.  https://doi.org/10.1021/acs.jpca.8b09794 CrossRefPubMedGoogle Scholar
  428. Trchová M, Šeděnková I, Konyushenko EN, Stejskal J, Holler P, Ćirić-Marjanović G (2006) Evolution of polyaniline nanotubes: the oxidation of aniline in water. J Phys Chem B 110:9461–9468.  https://doi.org/10.1021/jp057528g CrossRefPubMedGoogle Scholar
  429. Trchová M, Konyushenko EN, Stejskal J, Kovářová J, Ćirić-Marjanović G (2009) The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-wall carbon nanotubes. Polym Degrad Stab 94:929–938.  https://doi.org/10.1016/j.polymdegradstab.2009.03.001 CrossRefGoogle Scholar
  430. Trung VQ, Trang NTH, Thi TM, Vorayuth K, Nghia NM, Tuan MA (2018) Synthesis and properties of Fe3O4 polyaniline nanomaterial and its ability of removing arsenic in wastewater. Mater Trans 59:1095–1100.  https://doi.org/10.2320/matertrans.md201703 CrossRefGoogle Scholar
  431. Tuo X, Li BR, Yu XH, Chen CL, Huang ZL, Cao H, Huang YN, Li L (2018) Facile synthesis of magnetic polypyrrole composite nanofibers and their application in Cr(VI) removal. Polym Compos 39:1507–1513.  https://doi.org/10.1002/pc.24091 CrossRefGoogle Scholar
  432. Umoren SA, Solomon MM (2019) Protective polymeric films for industrial substrates: a critical review on past and recent applications with conducting polymers and polymer composites/nanocomposites. Prog Mater Sci 104:380–450.  https://doi.org/10.1016/j.prmatsci.2019.04.002 CrossRefGoogle Scholar
  433. Vaez M, Alijani S, Omidkhah M, Moghaddam AZ (2018) Synthesis, characterization, and optimization of N-TiO2/PANI nanocomposite for photodegradation of acid dye under visible light. Polym Compos 39:4605–4616.  https://doi.org/10.1002/pc.24574 CrossRefGoogle Scholar
  434. Valtera S, Prokeš J, Kopecká J, Vrňata M, Trchová M, Varga M, Stejskal J, Kopecký D (2017) Dye-stimulated control of conducting polypyrrole morphology. RSC Adv 7:51495–51505.  https://doi.org/10.1039/c7ra10027b CrossRefGoogle Scholar
  435. Varga M, Kopecká J, Morávková Z, Křivka I, Trchová M, Stejskal J, Prokeš J (2015) Effect of oxidant on electronic transport in polypyrrole nanotubes synthesized in the presence of methyl orange. J Polym Sci, Part B: Polym Phys 53:1147–1159.  https://doi.org/10.1002/polb.23755 CrossRefGoogle Scholar
  436. Varga M, Kopecký D, Kopecká J, Křivka I, Hanuš J, Zhigunov A, Trchová M, Vrňata M, Prokeš J (2017) The ageing of polypyrrole nanotubes synthesized with methyl orange. Eur Polym J 96:176–189.  https://doi.org/10.1016/j.eurpolymj.2017.08.052 CrossRefGoogle Scholar
  437. Vidya J, Balamurugan P (2019a) Photocatalytic degradation of methylene blue using PANi-NiO nanocomposite under visible light irradiation. Mater Res Express 6:0950c8.  https://doi.org/10.1088/2053-1591/ab34a3 CrossRefGoogle Scholar
  438. Vidya J, Balamurugan P (2019b) Photocatalytic degradation of methylene blue using PANi/Ceria nanocomposite under visible light irradiation. Desalin Water Treat 156:349–356.  https://doi.org/10.5004/dwt.2019.23934 CrossRefGoogle Scholar
  439. Vidya J, John Bosco A, Haribaaskar K, Balamurugan P (2019) Polyaniline-BiVO4 nanoconmposite as an efficient adsorbent for the removal of methyl orange from aqueous solution. Mater Sci Semicond Process 103:104645.  https://doi.org/10.1016/j.mssp.2019.104645 CrossRefGoogle Scholar
  440. Wang F, Min SX, Han YQ, Feng L (2010) Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2 composite photocatalysts. Superlattices Microstruct 48:170–180.  https://doi.org/10.1016/j.spmi.2010.06.009 CrossRefGoogle Scholar
  441. Wang YJ, Yang C, Liu P (2011) Acid blue AS doped polypyrrole (PPy/AS) nanomaterials with different morphologies as electrode materials for supercapacitors. Chem Eng J 172:1137–1144.  https://doi.org/10.1016/j.cej.2011.06.061 CrossRefGoogle Scholar
  442. Wang HL, Zhao DY, Jiang WF (2012) Synthesis and photocatalytic activity of poly-o-phenylenediamine (PoPD)/TiO2 composite under VIS-light irradiation. Synth Met 162:296–302.  https://doi.org/10.1016/j.synthmet.2011.12.009 CrossRefGoogle Scholar
  443. Wang YJ, Wang X, Yang C, Mu B, Liu P (2013a) Effect of Acid Blue BRL on morphology and electrochemical properties of polypyrrole materials. Powder Technol 235:901–908.  https://doi.org/10.1016/j.powtec.2012.11.049 CrossRefGoogle Scholar
  444. Wang QZ, Hui J, Li JJ, Cai YX, Yin SQ, Wang FP, Su BT (2013b) Photodegradation of methyl orange with PANI-modified BiOCl photocatalyst under visible light irradiation. Appl Surf Sci 283:577–583.  https://doi.org/10.1016/j.apsusc.2013.06.149 CrossRefGoogle Scholar
  445. Wang HL, Zhao DY, Jiang WF (2013c) VIS-light-induced photocatalytic degradation of methylene blue (MB) dye using PoPD/TiO2 composite photocatalysts. Desalin Water Treat 51:2826–2835.  https://doi.org/10.1080/19443994.2012.750789 CrossRefGoogle Scholar
  446. Wang YJ, Liu P, Yang C, Mu B, Wang AQ (2013d) Improving capacitance performance of attapulgite/polypyrrole composite by introducing rhodamine B. Electrochim Acta 89:422–428.  https://doi.org/10.1016/j.electacta.2012.11.065 CrossRefGoogle Scholar
  447. Wang WZ, Xu JH, Zhang L, Sun SM (2014) Bi2WO4/PANI: an efficient visible-light-induced photocatalytic composite. Catal Today 224:147–153.  https://doi.org/10.1016/j.cattod.2013.11.030 CrossRefGoogle Scholar
  448. Wang N, Li JJ, Feng JT, Yan W (2015a) Synthesis of polyaniline TiO2 composite with excellent adsorption performance on acid red G. RSC Adv 5:21132–21141.  https://doi.org/10.1039/c4ra16910g CrossRefGoogle Scholar
  449. Wang Y, Gai LG, Ma WY, Jiang HH, Peng XQ, Zhao LC (2015b) Ultrasound-assisted catalytic degradation of methyl orange with Fe3O4/polyaniline in near neutral solution. Ind Eng Chem Res 54:2279–2289.  https://doi.org/10.1021/ie504242k CrossRefGoogle Scholar
  450. Wang W, Cai K, Wu XF, Shao XH, Yang XJ (2017) A novel poly(m-phenylenediamine)/reduced graphene oxide/nickel ferrite magnetic adsorbent with excellent removal ability of dyes and Cr(VI). J Alloys Compd 722:532–543.  https://doi.org/10.1016/j.jallcom.2017.06.069 CrossRefGoogle Scholar
  451. Wang GQ, Liu JQ, Dong WN, Yan C, Zhang W (2018a) Nitrogen/sulfur co-doped porous carbon nanosheets and its electrochemical performance. Acta Phys Sinica 67:238103.  https://doi.org/10.7498/aps.67.20181524 CrossRefGoogle Scholar
  452. Wang HF, Duan MM, Guo Y, Wang CY, Shi ZT, Liu JD, Lv JH (2018b) Graphene oxide edge grafting of polyaniline composite: an efficient adsorbent for methylene blue and methyl orange. Water Sci Technol 77:2751–2760.  https://doi.org/10.2166/wst.2018.250 CrossRefPubMedGoogle Scholar
  453. Wang C, Guo ZP, Hong P, Gao J, Guo Y, Gu C (2018c) A novel method of synthesis of polyaniline and its application for catalytic degradation of atrazine in a Fenton-like system. Chemosphere 197:576–584.  https://doi.org/10.1016/j.chemosphere.2018.01.050 CrossRefPubMedGoogle Scholar
  454. Wang ML, Cui MZ, Liu WF, Liu XG (2019a) Highly dispersed conductive polypyrrole hydrogels as sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid. J Electroanal Chem 832:174–181.  https://doi.org/10.1016/j.jelechem.2018.10.057 CrossRefGoogle Scholar
  455. Wang ML, Shi HF, Ciu MZ, Liu WF, Liu XG (2019b) Ultrasensitive electrochemical determination of Sunset Yellow in foods using size-tunable nitrogen-doped carbon spheres. J Electrochem Soc 166:B13–B22.  https://doi.org/10.1149/2.1151816jes CrossRefGoogle Scholar
  456. Wang L, Li X, Tang ZC, Zhou N, Yu ZS, Dong YZ, Li XZ, Wei DG, Dong YL, Li QH, Liu P (2019c) Preparation and photocatalytic performance of Bi5O7I/PANI composites. Chin J Inorg Chem 35:271–276.  https://doi.org/10.11862/cjic.2019.047 CrossRefGoogle Scholar
  457. Wang J, Hao XY, Jiang YX, DE Zhang, Ren LZ, Gong JY, Wu XJ, Zhang YY, Tong ZW (2019d) Synthesis, structure, and photocatalytic activity of PANI/BiOCl nanocomposites. Mater Res Exp 6:0850c1.  https://doi.org/10.1088/2053-1591/ab1fa5 CrossRefGoogle Scholar
  458. Wang LC, Zhang CG, Jiao X, Yuan ZH (2019e) Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Res 12:1129–1137.  https://doi.org/10.1007/s12274-019-2360-5 CrossRefGoogle Scholar
  459. Wang YZ, Liu YX, Xia K, Zhang Y, Yang JL (2019f) NiCo2S4 nanoparticles anchoring on polypyrrole nanotubes for high-performance supercapacitor electrodes. J Electroanal Chem 840:242–248.  https://doi.org/10.1016/j.jelechem.2019.03.076 CrossRefGoogle Scholar
  460. Wei M, Dai TY, Lu Y (2010) Controlled fabrication of nanostructured polypyrrole on ion association template: tubes, rods and networks. Synth Met 160:849–854.  https://doi.org/10.1016/j.synthmet.2010.01.032 CrossRefGoogle Scholar
  461. Wei ST, Hu XL, Liu HL, Wang Q, He CY (2015) Rapid degradation of Congo red by molecularly imprinted polypyrrole coated magnetic TiO2 nanoparticles in dark and at ambient conditions. J Hazard Mater 294:168–176.  https://doi.org/10.1016/j.jhazmat.2015.03.067 CrossRefPubMedGoogle Scholar
  462. Wei WL, Du PC, Liu D, Wang Q, Liu P (2018) Facile one-pot synthesis of well-defined coaxial sulfur/polypyrrole nanocomposites as cathodes for long-cycling lithium–sulfur batteries. Nanoscale 10:13037–13044.  https://doi.org/10.1039/c8nr01530a CrossRefPubMedGoogle Scholar
  463. Wu MC, Zhao TS, Zhang RH, Wei L, Jiang HR (2018) Carbonized tubular polypyrrole with high activity for the Br2/Br redox reaction in zinc-bromine flow batteries. Electrochim Acta 284:569–576.  https://doi.org/10.1016/j.electacta.2018.07.192 CrossRefGoogle Scholar
  464. Wu HH, Chang CW, Lu D, Maeda K, Hu CC (2019) Synergistic effect of hydrochloric and phytic acid doping on polyaniline-coupled g-C3N4 nanosheets for photocatalytic Cr(VI) reduction and dye degradation. ACS Appl Mater Interfaces 11:35702–35712.  https://doi.org/10.1021/acsami.9b10555 CrossRefPubMedGoogle Scholar
  465. Würthner F, Kaiser TE, Saha-Möller CR (2011) J-Aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angew Chem Int Ed 50:3376–3410.  https://doi.org/10.1002/anie.201002307 CrossRefGoogle Scholar
  466. Xiao DJ, Ma J, Chen CL, Luo QM, Ma J, Zheng LR, Zuo X (2018) Oxygen-doped carbonaceous polypyrrole nanotubes-supported Ag nanoparticle as electrocatalyst for oxygen reduction reaction in alkaline solution. Mater Res Bull 105:184–191.  https://doi.org/10.1016/j.matresbull.2018.04.030 CrossRefGoogle Scholar
  467. Xie HF, Yan M, Zhang Q, Qu HX, Kong JM (2017) Hemin based biomimetic synthesis of PANI@iron oxide and its adsorption of dyes. Desalin Water Treat 67:346–356.  https://doi.org/10.5004/dwt.2017.20409 CrossRefGoogle Scholar
  468. Xin SC, Yang N, Zhao J, Li L, Teng C (2017) Three-dimensional polypyrrole-derived carbon nanotube framework for dye adsorption and electrochemical supercapacitor. Appl Surf Sci 414:218–223.  https://doi.org/10.1016/j.apsusc.2017.04.109 CrossRefGoogle Scholar
  469. Xin SC, Yang N, Gao F, Zhao J, Li L, Teng C (2018) Free-standing and flexible polypyrrole nanotube/reduced graphene oxide hybrid film with promising thermoelectric performance. Mater Chem Phys 212:440–445.  https://doi.org/10.1016/j.matchemphys.2018.03.025 CrossRefGoogle Scholar
  470. Xing JY, Yang B, Shen Y, Wang ZH, Wang F, Shi XF, Zhang ZW (2019) Selective removal of Acid Fuchsin from aqueous solutions by rapid adsorption onto polypyrrole crosslinked cellulose/gelatin hydrogels. J Dispers Sci Technol 40:1591–1599.  https://doi.org/10.1080/01932691.2018.1518147 CrossRefGoogle Scholar
  471. Xu J, Wang DX, Fan LL, Yuan Y, Wei W, Liu R, Gu SJ, Xu WL (2015) Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via self-degraded template. Org Electron 26:292–299.  https://doi.org/10.1016/j.orgel.2015.07.054 CrossRefGoogle Scholar
  472. Xu CM, Wang HY, Deng J, Wang Y (2018) High-performance flexible redox supercapacitors induced by methylene blue with a wide voltage window. Sustain Energy Fuels 2:357–360.  https://doi.org/10.1039/c7se00492c CrossRefGoogle Scholar
  473. Xu YQ, Gao ZY, Chen W, Wang E, Li Y (2019a) Preparation and application of malachite green molecularly imprinted/gold nanoparticle composite film-modified glassy carbon electrode. Ionics 25:1177–1185.  https://doi.org/10.1007/s11581-018-2778-x CrossRefGoogle Scholar
  474. Xu H, Zhang YJ, Cheng Y, Tian WG, Zhao ZT, Tang J (2019b) Polyaniline attapulgite supported nanoscale zero-valent iron for the rival removal of azo dyes in aqueous solution. Adsorpt Sci Technol 37:217–235.  https://doi.org/10.1177/0263617418822917 CrossRefGoogle Scholar
  475. Xu WJ, Chen YZ, Kang JX, Li BJ (2019c) Synthesis of polyaniline/lignosulfonate for highly efficient removal of acid red 94 from aqueous solution. Polym Bull 76:4103–4116.  https://doi.org/10.1007/s00289-018-2586-5 CrossRefGoogle Scholar
  476. Xue YP, Lu XF, Xu Y, Bian XJ, Kong LR, Wang C (2010) Controlled fabrication of polypyrrole capsules and nanotubes in the presence of Rhodamine B. Polym Chem 1:1602–1605.  https://doi.org/10.1039/c0py00305k CrossRefGoogle Scholar
  477. Yan W, Han J (2007) Synthesis and formation mechanism study of rectangular-sectioned polypyrrole micro/nanotubules. Polymer 48:6782–6790.  https://doi.org/10.1016/j.polymer.2007.09.026 CrossRefGoogle Scholar
  478. Yan B, Chen ZH, Cai L, Chen ZM, Fu JW, Xu Q (2015) Fabrication of polyaniline hydrogel: synthesis, characterization and adsorption of methylene blue. Appl Surf Sci 356:39–47.  https://doi.org/10.1016/j.apsusc.2015.08.024 CrossRefGoogle Scholar
  479. Yan C, Zhang Z, Wang W, Ju T, She H, Wang Q (2018) Synthesis and characterization of polyaniline-mofified BiOI: a visible-light-response photocatalysts. J Mater Sci: Mater Electron 29:18343–18351.  https://doi.org/10.1007/s10854-018-9948-5 CrossRefGoogle Scholar
  480. Yang YJ (2016) Facile synthesis of poly(Safranine T)/reduced graphene oxide nanocomposite for supercapacitors with wide potential window in aqueous neutral electrolyte. Fuller Nanotub Carbon Nanostruct 24:243–248.  https://doi.org/10.1080/1536383x.2016.1146708 CrossRefGoogle Scholar
  481. Yang Z, Chen ZH (2019) Thermally doped polypyrrole nanotubes with sulfuric acid for flexible all-solid-state supercapacitors. Nanotechnology 30:245402.  https://doi.org/10.1088/1361-6528/ab0be7 CrossRefPubMedGoogle Scholar
  482. Yang XM, Zhu ZX, Dai TY, Lu Y (2005) Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol Rapid Commun 26:1736–1740.  https://doi.org/10.1002/marc.200500514 CrossRefGoogle Scholar
  483. Yang SW, Ye CC, Song X, He L, Liao F (2014) Theoretical calculation based synthesis of a poly(p-phenylenediamine)-Fe3O4 composite: a magnetically recyclable photocatalysts with high selectivity for acid dyes. RSC Adv 4:54810–54818.  https://doi.org/10.1039/c4ra11138a CrossRefGoogle Scholar
  484. Yang CL, Wei HG, Guan LT, Guo J, Wang YR, Yan XR, Zhang X, Wei SY, Guo ZH (2015) Polymer nanocomposites for energy storage, energy saving, and anticorrosion. J Mater Chem A 3:14929–14941.  https://doi.org/10.1039/c5ta02707a CrossRefGoogle Scholar
  485. Yang CY, Zhang PF, Nautiyal A, Li SH, Liu N, Yin JL, Deng KL, Zhang XY (2019) Tunable three-dimensional nanostructured conductive polymer hydrogels for energy-storage applications. ACS Appl Mater Interfaces 11:4258–4267.  https://doi.org/10.1021/acsami.8b19180 CrossRefPubMedGoogle Scholar
  486. Yao TJ, Jia WJ, Tong X, Feng Y, Qi Y, Zhan X, Wu J (2018) One-step preparation on nanobeads-based polypyrrole hydrogel by a reactive template method and their applications in adsorption and catalysis. J Colloid Interface Sci 525:214–221.  https://doi.org/10.1016/j.jcis.2018.05.052 CrossRefGoogle Scholar
  487. Yashas SR, Sandeep S, Shivakumar BP, Swamy NK (2019) A matrix of perovskite micro-seeds and polypyrrole nanotubes tethered laccase/graphite biosensor for sensitive quantification of 2,4-dichlorophenol in wastewater. Anal Meth 11:4511–4519.  https://doi.org/10.1039/c9ay01468c CrossRefGoogle Scholar
  488. Ye LJ, Zhang T, Shao SW, Yang L, Guan WS (2019a) Synthesis of poly-o-phenylenediamine (PoPD)/znWO4 supported on the fly-ash cenospheres with enhanced photocatalytic performance under visible light. Mater Lett 236:370–373.  https://doi.org/10.1016/j.matlet.2018.10.137 CrossRefGoogle Scholar
  489. Ye X, Xu QC, Xu J (2019b) Oxidant-templating fabrication of pure polypyrrole hydrogel beads as a highly efficient dye adsorbent. RSC Adv 9:5895–5900.  https://doi.org/10.1039/c9ra00209j CrossRefGoogle Scholar
  490. Yihan S, Mingming L, Guo ZG (2018) Ag nanoparticles loading of polypyrrole-coated superwetting mesh for on-demand separation of oil-water mixtures and catalytic reduction of aromatic dyes. J Colloid Interface Sci 527:187–194.  https://doi.org/10.1016/j.jcis.2018.05.048 CrossRefPubMedGoogle Scholar
  491. Yu WJ, Cheng Y, Zou T, Liu Y, Wu K, Peng N (2018) Preparation of BiPO4-polyaniline hybrid and its enhanced photocatalytic performance. Nano 13:1850009.  https://doi.org/10.1142/s1793292018500091 CrossRefGoogle Scholar
  492. Yu J, Pang ZG, Zheng CH, Zhou TC, Zhang J, Zhou HM, Wei QF (2019) Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity. Appl Surf Sci 470:84–90.  https://doi.org/10.1016/j.apsusc.2018.11.112 CrossRefGoogle Scholar
  493. Yuan XJ, Floresyona D, Aubert PH, Bui TT, Remita S, Ghosh S, Brisset F, Goubart F, Remita H (2019) Photocatalytic degradation of organic pollutant with polypyrrole nanostructures under UV and visible light. Appl Catal B: Environ 242:284–292.  https://doi.org/10.1016/j.apcatb.2018.10.002 CrossRefGoogle Scholar
  494. Zang LM, Liu QF, Yang C, Chen J, Qiu JH, Song G (2018) Alizarin red: a reactive dye to enhance nanoengineered polypyrrole with high electrochemical energy storage. Polym Bull 75:3311–3323.  https://doi.org/10.1007/s00289-017-2211-z CrossRefGoogle Scholar
  495. Zare EN, Motahari A, Sillanpää (2018a) Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ Res 162:173–195.  https://doi.org/10.1016/j.envres.2017.12.025 CrossRefPubMedGoogle Scholar
  496. Zare EN, Lakouraj MM, Kasirian N (2018b) Development of effective nano-biosorbent based on poly-m-phenylenediamine grafted dextrin for removal of Pb(II) and methylene blue from water. Carbohydr Polym 201:539–548.  https://doi.org/10.1016/j.carbpol.2018.08.091 CrossRefPubMedGoogle Scholar
  497. Zarrini K, Rahimi A, Alihosseini F, Fashandi H (2017) Highly efficient dye adsorbent based on polyaniline-coated nylon-6 nanofibers. J Clean Prod 142:3645–3654.  https://doi.org/10.1016/j.jclepro.2016.10.103 CrossRefGoogle Scholar
  498. Zeng Y, Zhao LJ, Wu WD, Lu GX, Xu F, Tong Y, Liu WB, Du JH (2013) Enhanced adsorption of malachite green onto carbon nanotube/polyaniline composites. J Appl Polym Sci 127:2475–2482.  https://doi.org/10.1002/app.37947 CrossRefGoogle Scholar
  499. Zeng S, Yang J, Qiu XY, Liang ZY, Zhang YM (2016) Magnetically recyclable MnFe2O4/polyaniline composite with enhanced visible light photocatalytic activity for rhodamine B degradation. J Ceram Soc Jpn 124:1152–1156.  https://doi.org/10.2109/jcersj2.16056 CrossRefGoogle Scholar
  500. Zhang CL, Ma RH (2019) Synthesis and photocatalytic activity of MnV13/GO/PANI composite catalysts. J Coord Chem.  https://doi.org/10.1080/00958972.2019.1670816 CrossRefGoogle Scholar
  501. Zhang LY, Wang HY, Yu WT, Su Z, Chai LY, Li JH, Shi Y (2012) Facile and large-scale synthesis of functional poly(m-phenylenediamine) nanoparticles by Cu2+-assisted methods with superior ability for dye adsorption. J Mater Chem 22:18244–18251.  https://doi.org/10.1039/c2jm32859c CrossRefGoogle Scholar
  502. Zhang SW, Zhao LP, Zeng MY, Li JX, Xu JZ, Wang XK (2014) Hierarchical nanocomposites of polyaniline nanorods arrays on graphitic carbon nitride sheets with synergistic effect for photocatalysis. Catal Today 224:114–121.  https://doi.org/10.1016/j.cattod.2013.12.008 CrossRefGoogle Scholar
  503. Zhang J, Liu Y, Guan HJ, Zhao YF, Zhang B (2017) Decoration of nickel hydroxide nanoparticles onto polypyrrole nanotubes with enhanced electrochemical performance for supercapacitors. J Alloys Compd 721:731–740.  https://doi.org/10.1016/j.jallcom.2017.06.061 CrossRefGoogle Scholar
  504. Zhang MM, Chang LL, Yu ZH (2018) Fabrication of halloysite nanotubes/polypyrrole nanocomposites for efficient removal of methyl orange. Desalin Water Treat 110:209–218.  https://doi.org/10.5004/dwt.2018.22220 CrossRefGoogle Scholar
  505. Zhang XJ, Sheng QL, Zheng JB (2019a) Synthesis of palladium nanocubes decorated polypyrrole nanotubes and its application for electrochemical sensing. J Iran Chem Soc 16:1061–1069.  https://doi.org/10.1007/s13738-018-01578-y CrossRefGoogle Scholar
  506. Zhang CJ, Tian JX, Rao WD, Guo B, Fan LL, Xu WL, Xu J (2019b) Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors. Cellulose 26:3387–3399.  https://doi.org/10.1007/s10570-019-02321-3 CrossRefGoogle Scholar
  507. Zhang MM, Chang LL, Zhao YY, Yu ZH (2019c) Fabrication of zinc/oxide/polypyrrole nanocomposite for Brilliant Green removal from aqueous phase. Arab J Sci Eng 44:111–121.  https://doi.org/10.1007/s13369-018-3258-3 CrossRefGoogle Scholar
  508. Zhao Y, Chen HL, Li J, Chen CL (2013a) Hierarchical MWCNT/Fe3O4/PANI magnetic composite as adsorbent for methyl orange removal. J Colloid Interface Sci 450:189–195.  https://doi.org/10.1016/j.jcis.2015.03.015 CrossRefGoogle Scholar
  509. Zhao YC, Tomšík E, Wang JX, Morávková Z, Zhigunov A, Stejskal J, Trchová M (2013b) Self-assembly of aniline oligomers. Chem Asian J 8:129–137.  https://doi.org/10.1002/asia.201200836 CrossRefPubMedGoogle Scholar
  510. Zhao YC, Stejskal J, Wang JX (2013c) Towards directional assembly of hierarchical structures: aniline oligomers as the model precursors. Nanoscale 5:2620–2626.  https://doi.org/10.1039/c3nr00145h CrossRefPubMedGoogle Scholar
  511. Zhao JJ, Biswas MRUD, Oh WC (2019a) A novel BiVO4-GO-TiO2-PANI composite for upgraded photocatalytic performance under visible light and its non-toxicity. Environ Sci Pollut Res 26:11888–11904.  https://doi.org/10.1007/s11356-019-04441-6 CrossRefGoogle Scholar
  512. Zhao LM, Shao X, Wang M, Zhao H, Ge B, Li WZ (2019b) A novel rose-like polyaniline Bi2WO6 nanocomposite: synthesis and its application in photocatalysis. Desalin Water Treat 163:224–232.  https://doi.org/10.5004/dwt.2019.24390 CrossRefGoogle Scholar
  513. Zhao YH, Xia X, Zhang ZZ, Zhu ZM, Guo YF, Qu Z (2019c) Facile synthesis of polypyrrole-functionalized CoFe2O4@SiO2 for removal of Hg(II). Nanomaterials 9:455.  https://doi.org/10.3390/nano9030455 CrossRefPubMedCentralGoogle Scholar
  514. Zheng Y, Liu Y, Wang AQ (2012) Kapok fiber oriented polyaniline for removal of sulfonated dyes. Ind Eng Chem Res 51:10079–10087.  https://doi.org/10.1021/ie300246m CrossRefGoogle Scholar
  515. Zhong DJ, Liao XR, Liu YQ, Zhong NB, Xu YL (2018) Enhanced electricity generation performance and dye wastewater degradation of microbial fuel cell by using petaline NiO@polyaniline-carbon felt anode. Bioresour Technol 258:125–134.  https://doi.org/10.1016/j.biortech.2018.01.117 CrossRefPubMedGoogle Scholar
  516. Zhou CQ, Li XX, Gong XX, Han J, Guo R (2015) Ethanol-guided synthesis of flower-on-leaf-like aniline oligomers with excellent adsorption properties. New J Chem 39:9257–9264.  https://doi.org/10.1039/c5nj01828e CrossRefGoogle Scholar
  517. Zhou J, Lü QF, Luo JJ (2017) Efficient removal of organic dyes from aqueous solution by rapid adsorption onto polypyrrole-based composites. J Clean Product 167:739–748.  https://doi.org/10.1016/j.jclepro.2017.08.196 CrossRefGoogle Scholar
  518. Zhou T, Ma L, Gan MY, Wang HH, Hao CX (2019) Sandwich-structured hybrids: a facile electrostatic self-assembly of exfoliated titania nanosheets and polyaniline nanoparticles and its high visible-light photocatalytic performance. J Phys Chem Solids 125:123–130.  https://doi.org/10.1016/j.jpcs.2018.10.021 CrossRefGoogle Scholar
  519. Zoromba MS, Ismail MIM, Bassyouni M, Abdel-Aziz MH, Saleh N, Alshahrie A, Memic A (2017) Fabrication and characterization of poly(aniline-co-o-anthranilic acid)/magnetite nanocomposites and their application in waste water treatment. Colloid Surf A-Physicochem Eng Asp 520:121–130.  https://doi.org/10.1016/j.colsurfa.2017.01.075 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations