Advertisement

Novel Fe3O4 chitosan–quince-seed mucilage polymeric composite to enhance protein release

  • Pegah Hajivand
  • Faramarz Ghandi
  • Iman AkbariEmail author
Original Paper

Abstract

This work aimed at evaluating the ability of chitosan (CS)–quince-seed mucilage (QSM) polymeric matrix in biomedical applications. Hence, bovine albumin serum (BSA) was selected as a sample protein and the potential of this polymeric composite in both protein encapsulation and controlled protein release was investigated. To recognize the effect of magnetism on the performance of this biomaterial, CS–BSA–QSM–magnetite NPs were fabricated and the experiment was repeated in the presence and absence of alternating magnetic field. As a result, over 63% of BSA loading into chitosan was achieved using QSM in the absence of any crosslinker. Also the results confirmed the positive effect of magnetite NPs on BSA encapsulation efficiency and the ability of magnetite NPs in controlling protein release. Also, the kinetics of protein release from all three samples was explored and some mechanisms were suggested.

Keywords

Quince-seed mucilage Magnetite nanoparticles Release kinetic Oral protein delivery Chitosan 

Notes

Acknowledgements

The authors gratefully appreciate the technical and financial support of ACECR Institute of Higher Education and Islamic Azad University, Tehran Science and Research Branch.

References

  1. Akbari I, Ghoreishi S, Habibi N (2014) Generation and precipitation of paclitaxel nanoparticles in basil seed mucilage via combination of supercritical gas antisolvent and phase inversion techniques. J Supercrit Fluids 94:182–188CrossRefGoogle Scholar
  2. Akbari I, Ghoreishi SM, Habibi N (2015) Supercritical CO2 generation of nanometric structure from Ocimum basilicum mucilage prepared for pharmaceutical applications. AAPS PharmSciTech 16(2):428–434PubMedCrossRefPubMedCentralGoogle Scholar
  3. Antonietti M, Fratzl P (2010) Biomimetic principles in polymer and material science. Macromol Chem Phys 211(2):166–170CrossRefGoogle Scholar
  4. Ashraf MU, Hussain MA, Muhammad G, Haseeb MT, Bashir S, Hussain SZ, Hussain I (2017) A superporous and superabsorbent glucuronoxylan hydrogel from quince (Cydonia oblanga): stimuli responsive swelling, on-off switching and drug release. Int J Biol Macromol 95:138–144PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ashraf MU, Hussain MA, Bashir S, Haseeb MT, Hussain Z (2018) Quince seed hydrogel (glucuronoxylan): evaluation of stimuli responsive sustained release oral drug delivery system and biomedical properties. J Drug Deliv Sci Technol 45:455–465CrossRefGoogle Scholar
  6. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254PubMedCrossRefPubMedCentralGoogle Scholar
  8. Brazel CS, Peppas NA (1999) Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers. Polymer 40(12):3383–3398CrossRefGoogle Scholar
  9. Brugnerotto J, Lizardi J, Goycoolea F, Argüelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42(8):3569–3580CrossRefGoogle Scholar
  10. Bugnicourt L, Ladaviere C (2016) Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Prog Polym Sci 60:1–17CrossRefGoogle Scholar
  11. Bui V, Park D, Lee Y-C (2017) Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers 9(1):21PubMedCentralCrossRefGoogle Scholar
  12. Cheng X, Jin Y, Sun T, Qi R, Fan B, Li H (2015) Oxidation-and thermo-responsive poly (N-isopropylacrylamide-co-2-hydroxyethyl acrylate) hydrogels cross-linked via diselenides for controlled drug delivery. RSC Adv 5(6):4162–4170CrossRefGoogle Scholar
  13. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792CrossRefGoogle Scholar
  14. Dokoohaki ZN, Sekhavatizadeh SS, Hosseinzadeh S (2019) Dairy dessert containing microencapsulated Lactobacillus rhamnosus (ATCC 53103) with quince seed mucilage as a coating material. LWT 115:108429CrossRefGoogle Scholar
  15. Duan J, Liang X, Cao Y, Wang S, Zhang L (2015) High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules 48(8):2706–2714CrossRefGoogle Scholar
  16. Dulbecco R, Vogt M (1954) Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med 99(2):167–182PubMedPubMedCentralCrossRefGoogle Scholar
  17. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Renneckar S (2010) current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRefGoogle Scholar
  18. Euliss LE, DuPont JA, Gratton S, DeSimone J (2006) Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35(11):1095–1104PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105(33):11613–11618PubMedCrossRefPubMedCentralGoogle Scholar
  20. Ha MA, Apperley DC, Evans BW, Huxham IM, Jardine WG, Viëtor RJ, Jarvis MC (1998) Fine structure in cellulose microfibrils: NMR evidence from onion and quince. Plant J 16(2):183–190PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hakala TJ, Laaksonen P, Saikko V, Ahlroos T, Helle A, Mahlberg R, Linder MB (2012) Adhesion and tribological properties of hydrophobin proteins in aqueous lubrication on stainless steel surfaces. RSC Adv 2(26):9867–9872CrossRefGoogle Scholar
  22. Hakala TJ, Saikko V, Arola S, Ahlroos T, Helle A, Kuosmanen P, Laaksonen P (2014) Structural characterization and tribological evaluation of quince seed mucilage. Tribol Int 77:24–31CrossRefGoogle Scholar
  23. Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50CrossRefGoogle Scholar
  24. Han YL, Yang Y, Liu S, Wu J, Chen Y, Lu TJ, Xu F (2013) Directed self-assembly of microscale hydrogels by electrostatic interaction. Biofabrication 5(3):035004PubMedCrossRefPubMedCentralGoogle Scholar
  25. Haseeb MT, Hussain MA, Yuk SH, Bashir S, Nauman M (2016) Polysaccharides based superabsorbent hydrogel from Linseed: dynamic swelling, stimuli responsive on–off switching and drug release. Carbohyd Polym 136:750–756CrossRefGoogle Scholar
  26. Honarmand D, Ghoreishi SM, Habibi N, Nicknejad ET (2016) Controlled release of protein from magnetite–chitosan nanoparticles exposed to an alternating magnetic field. J Appl Polym Sci.  https://doi.org/10.1002/app.43335 CrossRefGoogle Scholar
  27. Hu S-H, Liu T-Y, Liu D-M, Chen S-Y (2007) Nano-ferrosponges for controlled drug release. J Control Release 121(3):181–189PubMedCrossRefPubMedCentralGoogle Scholar
  28. Huang Y, Yu H, Xiao C (2007) pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: swelling and in vitro drug release. Carbohyd Polym 69(4):774–783CrossRefGoogle Scholar
  29. Jing Z-W, Ma Z-W, Li C, Jia Y-Y, Luo M, Ma X-X, Zhang B-L (2017) Chitosan cross-linked with poly (ethylene glycol) dialdehyde via reductive amination as effective controlled release carriers for oral protein drug delivery. Bioorg Med Chem Lett 27(4):1003–1006PubMedCrossRefPubMedCentralGoogle Scholar
  30. Karimi AR, Rostaminejad B, Rahimi L, Khodadadi A, Khanmohammadi H, Shahriari A (2018) Chitosan hydrogels cross-linked with tris (2-(2-formylphenoxy) ethyl) amine: swelling and drug delivery. Int J Biol Macromol 118:1863–1870PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kumar MR, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb A (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084PubMedCrossRefPubMedCentralGoogle Scholar
  32. Lakkakula JR, Matshaya T, Krause RWM (2017) Cationic cyclodextrin/alginate chitosan nanoflowers as 5-fluorouracil drug delivery system. Mater Sci Eng C 70:169–177CrossRefGoogle Scholar
  33. Langer R (1980) Invited review polymeric delivery systems for controlled drug release. Chem Eng Commun 6(1–3):1–48CrossRefGoogle Scholar
  34. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12):16071PubMedPubMedCentralCrossRefGoogle Scholar
  35. Lindberg B, Mosihuzzaman M, Nahar N, Abeysekera RM, Brown RG, Willison JM (1990) An unusual (4-O-methyl-d-glucurono)-d-xylan isolated from the mucilage of seeds of the quince tree (Cydonia oblonga). Carbohyd Res 207(2):307–310CrossRefGoogle Scholar
  36. Liu T-Y, Hu S-H, Liu T-Y, Liu D-M, Chen S-Y (2006) Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22(14):5974–5978PubMedCrossRefGoogle Scholar
  37. Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20(6):2472–2477PubMedCrossRefPubMedCentralGoogle Scholar
  38. Mohd Amin MCI, Ahmad N, Pandey M, Jue Xin C (2014) Stimuli-responsive bacterial cellulose-g-poly(acrylic acid-co-acrylamide) hydrogels for oral controlled release drug delivery. Drug Dev Ind Pharm 40(10):1340–1349PubMedCrossRefGoogle Scholar
  39. Muxika A, Etxabide A, Uranga J, Guerrero P, De La Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358–1368PubMedCrossRefPubMedCentralGoogle Scholar
  40. Nie J, Wang Z, Hu Q (2016) Difference between chitosan hydrogels via alkaline and acidic solvent systems. Sci Rep 6:36053PubMedPubMedCentralCrossRefGoogle Scholar
  41. Orzali L, Corsi B, Forni C, Riccioni L (2017) Chitosan in agriculture: a new challenge for managing plant disease. Biol Act Appl Mar Polysacch.  https://doi.org/10.5772/66840 CrossRefGoogle Scholar
  42. Ritger PL, Peppas NA (1987a) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Rel 5(1):23–36CrossRefGoogle Scholar
  43. Ritger PL, Peppas NA (1987b) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Rel 5(1):37–42CrossRefGoogle Scholar
  44. Roba M, Naka M, Gautier E, Spencer ND, Crockett R (2009) The adsorption and lubrication behavior of synovial fluid proteins and glycoproteins on the bearing-surface materials of hip replacements. Biomaterials 30(11):2072–2078PubMedCrossRefPubMedCentralGoogle Scholar
  45. Saikia C, Gogoi P, Maji T (2015) Chitosan: a promising biopolymer in drug delivery applications. J Mol Genet Med S 4:006Google Scholar
  46. Song M, Li L, Zhang Y, Chen K, Wang H, Gong R (2017) Carboxymethyl-β-cyclodextrin grafted chitosan nanoparticles as oral delivery carrier of protein drugs. React Funct Polym 117:10–15CrossRefGoogle Scholar
  47. Tang Z, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2(6):413PubMedCrossRefPubMedCentralGoogle Scholar
  48. VandeVord PJ, Matthew HW, DeSilva SP, Mayton L, Wu B, Wooley PH (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59(3):585–590PubMedCrossRefPubMedCentralGoogle Scholar
  49. Vårum KM, Myhr MM, Hjerde RJ, Smidsrød O (1997) In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohyd Res 299(1–2):99–101CrossRefGoogle Scholar
  50. Vignon MR, Gey C (1998) Isolation, 1H and 13C NMR studies of (4-O-methyl-d-glucurono)-d-xylans from luffa fruit fibres, jute bast fibres and mucilage of quince tree seeds. Carbohyd Res 307(1–2):107–111CrossRefGoogle Scholar
  51. Vunain E, Mishra A, Mamba B (2017) Fundamentals of chitosan for biomedical applications. Chitosan based biomaterials, vol 1. Elsevier, Amsterdam, pp 3–30CrossRefGoogle Scholar
  52. Wang W, Wang J, Kang Y, Wang A (2011a) Synthesis, swelling and responsive properties of a new composite hydrogel based on hydroxyethyl cellulose and medicinal stone. Compos B Eng 42(4):809–818CrossRefGoogle Scholar
  53. Wang Y, Assaad E, Ispas-Szabo P, Mateescu M, Zhu X (2011b) NMR imaging of chitosan and carboxymethyl starch tablets: swelling and hydration of the polyelectrolyte complex. Int J Pharm 419(1–2):215–221PubMedCrossRefPubMedCentralGoogle Scholar
  54. Wei Z, Yang JH, Liu ZQ, Xu F, Zhou JX, Zrínyi M, Chen YM (2015) Novel biocompatible polysaccharide-based self-healing hydrogel. Adv Funct Mater 25(9):1352–1359CrossRefGoogle Scholar
  55. Wu J, Jiang W, Shen Y, Tian R (2017) Synthesis and characterization of mesoporous magnetic nanocomposites wrapped with chitosan gatekeepers for pH-sensitive controlled release of doxorubicin. Mater Sci Eng C 70:132–140CrossRefGoogle Scholar
  56. Xie A-J, Yin H-S, Liu H-M, Zhu C-Y, Yang Y-J (2018) Chinese quince seed gum and poly (N, N-diethylacryl amide-co-methacrylic acid) based pH-sensitive hydrogel for use in drug delivery. Carbohyd Polym 185:96–104CrossRefGoogle Scholar
  57. Xu W, He X, Zhong M, Hu X, Xiao Y (2015) A novel pH-responsive hydrogel based on natural polysaccharides for controlled release of protein drugs. RSC Adv 5(5):3157–3167CrossRefGoogle Scholar
  58. Young M, Carroad P, Bell R (1980) Estimation of diffusion coefficients of proteins. Biotechnol Bioeng 22(5):947–955CrossRefGoogle Scholar
  59. Yu Z, Schmaltz RM, Bozeman TC, Paul R, Rishel MJ, Tsosie KS, Hecht SM (2013) Selective tumor cell targeting by the disaccharide moiety of bleomycin. J Am Chem Soc 135(8):2883–2886PubMedPubMedCentralCrossRefGoogle Scholar
  60. Zhang W, Sha Z, Huang Y, Bai Y, Xi N, Zhang Y (2015) Glow discharge electrolysis plasma induced synthesis of cellulose-based ionic hydrogels and their multiple response behaviors. RSC Adv 5(9):6505–6511CrossRefGoogle Scholar
  61. Zhao X, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ (2011) Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci 108(1):67–72PubMedCrossRefPubMedCentralGoogle Scholar
  62. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Faculty of Petroleum and Chemical EngineeringIslamic Azad University, Tehran Science and Research BranchTehranIran
  2. 2.ACECR Institute of Higher Education, Isfahan BranchKhomeinishahrIran

Personalised recommendations