How many ferrocene units of multi-ferrocenyl complexes can react with the electrode?

  • Ruo-Xuan Gao
  • Yuan-Yuan Gao
  • Rui-Jun Xie
  • Li-Min HanEmail author
Original Paper


Ferrocenylcarboxylic acid Fe, Co, and Ni complexes were synthesized as model complexes to investigate how many ferrocene units of multi-ferrocenyl system can react with the electrode. The molecular structures of model complexes were characterized by X-ray single-crystal diffraction, the diffusion coefficient of the complexes and ferrocene was determined by the diffusion-ordered spectroscopy and Einstein–Stokes equation, the electrode reaction numbers of ferrocene units were determined by cyclic voltammetry and the Randles–Sevcik equation. A model of electrode reaction of multi-ferrocenyl system was proposed in this paper, which was used to explore how many ferrocene units of multi-ferrocenyl complexes can react with the electrode.


Ferrocene Charge transfer Complex Electrode reaction model 

List of symbols


Current maximum (A)


Number of electrons transferred in the redox process


Electrode area (cm2)


Faraday constant


Diffusion coefficient (cm2 s−1)


Concentration (mol cm−3)


Scan rate (V s−1)


Gas constant


Temperature (°C)


Boltzmann constant

Greek letters


Molecular radius (Å)


Solution viscosity (m Pa s)



We are grateful to the Program for New Century Excellent Talents in University (NCET-08-858) and the Natural Science Foundation of China (NSFC-21462029).

Supplementary material

11696_2019_922_MOESM1_ESM.pdf (190 kb)
Supplementary material 1 (PDF 190 kb)
11696_2019_922_MOESM2_ESM.cif (50 kb)
Supplementary material 2 (CIF 49 kb)
11696_2019_922_MOESM3_ESM.pdf (187 kb)
Supplementary material 3 (PDF 186 kb)
11696_2019_922_MOESM4_ESM.cif (40 kb)
Supplementary material 4 (CIF 39 kb)
11696_2019_922_MOESM5_ESM.pdf (178 kb)
Supplementary material 5 (PDF 177 kb)
11696_2019_922_MOESM6_ESM.cif (48 kb)
Supplementary material 6 (CIF 48 kb)
11696_2019_922_MOESM7_ESM.docx (74 kb)
Supplementary material 7 (DOCX 73 kb)


  1. Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, OxfordGoogle Scholar
  2. Bai Y, Zhang B, Duan C, Dang D, Meng Q (2006) Anion induced binding electrochemical signal transduction in ferrocenyl benzolimidazolium podands. New J Chem 30:266–271. CrossRefGoogle Scholar
  3. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications. Department of Chemistry and Biochemistry University of Texas at Austin, New YorkGoogle Scholar
  4. Beer PD, Tite EL, Lbbotsonb A (1991) Multi redox-active macrocyclic host molecules containing multiple benzo crown ether and ferrocenyl moieties that bind bipyridinium dications: syntheses, co-ordination and electrochemical properties. J Chem Soc Dalton Trans. Google Scholar
  5. Chandrasekhar V, Thirumoorthi R (2008) Facile, ambient temperature, double Sn-C bond cleavage: synthesis, structure, and electrochemistry of organotin and organotellurium ferrocenecarboxylates. Eur J Inorg Chem. Google Scholar
  6. Collins RL, Pettit R (1967) Mössbauer studies of iron organometallic complexes—V The stable ferrocene-tetracyano ethylene charge-transfer complex. J Inorg Nucl Chem. Google Scholar
  7. Deng L, Wang L, Yu H, Wang J, Dong X, Li J, Tan Q, Huo J (2008) Synthesis and electrochemical properties of phloroglucin-based ferrocenyl compounds and their application in anion recognition. J Appl Polym Sci 107:1539–1546. CrossRefGoogle Scholar
  8. Didier A (2011) Ferrocenyl dendrimers: multi-electron redox reagents and their applications. New J Chem 35:764–772. CrossRefGoogle Scholar
  9. Esma D, Muamer D, Narkpa NJ, Mehmet S (2017) Development of novel amperometric urea biosensor based on Fc-PAMAM and MWCNT bio-nanocomposite film. Sens Actuators B Chem 246:920–926. CrossRefGoogle Scholar
  10. Gao Y, Chen J (2005) Electrocatalysis of carbon dioxide with hemin and hemin-coated latex. J Electroanal Chem 583:286–291. CrossRefGoogle Scholar
  11. Han J, Cai YH, Liu L, Yan CG, Li Q (2007a) Syntheses, crystal structures, and electrochemical properties of multi-ferrocenyl resorcinarenes. Tetrahedron 63:2275–2282. CrossRefGoogle Scholar
  12. Han L, Chen J, Aoki K (2007b) Size-dependent efficiency of electron transfer at suspended ferrocenyl jumbo particles. J Electroanal Chem 602:123–130. CrossRefGoogle Scholar
  13. Iyoda M, Kondo T, Okabe T, Matsuyama H, Sasaki S, Kuwatani Y (1997) A simple and efficient synthesis of di-, tri-, and tetraferrocenylarenes. Chem Lett 26:35–36. CrossRefGoogle Scholar
  14. Jonas IG, Kazutake T, Héctor DA (2002) Probing diffusional transport in redox-active dendrimers. J Phys Chem B 106:8504–8513. CrossRefGoogle Scholar
  15. Kuhnert J, Ruffer T, Ecorchard P, Bräuer B, Lan Y, Powellb AK, Lang H (2009) Reaction chemistry of 1,1′-ferrocene dicarboxylate towards M(ii) salts (M=Co, Ni, Cu): solid-state structure and electrochemical, electronic and magnetic properties of bi- and tetrametallic complexes and coordination polymers. Dalton Trans. Google Scholar
  16. Li H, Zhao F, Yue L, Li S, Xiao F (2016) Nonenzymatic electrochemical biosensor based on novel hydrophilic ferrocene-terminated hyperbranched polymer and its application in glucose detection. Electroanalysis 28:1003–1011. CrossRefGoogle Scholar
  17. Liu A, Leese DN, Swarts JC, Sykes AG (2002) Reduction of Escherichia coli ribonucleotide reductase subunit R2 with eight water-soluble ferrocene derivatives. Inorg Chim Acta. Google Scholar
  18. Luo M, Han L, Suo Q (2010) Synthesis and electrochemistry of 1,2,4-triferrocenylbenzene. Asian J Chem 22:6715–6721Google Scholar
  19. Ma H, Pedersen C, Zhao Q, Lyu Z, Chang H, Qiao Y, Hou X, Wang Y (2019) NMR analysis of the Fischer–Tropsch wastewater: combination of 1D selective gradient TOCSY, 2D DOSY and qNMR. Anal Chim Acta 1166:21–27. CrossRefGoogle Scholar
  20. Meyer GJ, Hall GB, Smith ER, Sakamoto T, Lichtenberger DL, Glass RS (2015) Through space interaction between ferrocenes mediated by a thioether. Polyhedron 86:125–132. CrossRefGoogle Scholar
  21. Morita K, Sato Y, Seino T, Nishizawa S, Teramae N (2008) Fluorescence and electrochemical detection of pyrimidine/purine transversion by a ferrocenyl aminonaphthyridine derivative. Org Biomol Chem 6:266–268. CrossRefGoogle Scholar
  22. Patoux C, Coudret C, Launay JP, Joachim C, Gourdon A (1997) Topological effects on intramolecular electron transfer via quantum interference. Inorg Chem 36:5037–5049CrossRefGoogle Scholar
  23. Pinel LF, Kugel RW, Ault BS (2015) Charge-transfer complexes and photochemistry of ozone with ferrocene and n-butylferrocene: a UV–vis matrix-isolation study. J Phys Chem A 119:10272–10278. CrossRefGoogle Scholar
  24. Sheldrick GM (1997a) SHELXS-97 program for the solution of crystal structures. University of Göttingen, GöttingenGoogle Scholar
  25. Sheldrick GM (1997b) SHELXS-97 program for the refinement of crystal structures. University of Göttingen, GöttingenGoogle Scholar
  26. Silvia M, Denis P, Charles S, Liliana Z, Tatiana C, Valentina B, Valeriu R, Constantin T (2011) Biotechnological application of homo- and heterotrinuclear iron(III) furoates for cultivation of iron-enriched Spirulina. Inorg Chim Acta 373:167–172. CrossRefGoogle Scholar
  27. Tan H, Yu H, Song Y, Zhu S, Zhang B, Yao H, Guan S (2018) Nonvolatile resistive memory devices based on ferrocene-terminated hyperbranched polyimide derived from different dianhydrides. J Polym Sci Part A Polym Chem 56:505–513. CrossRefGoogle Scholar
  28. Turlington MD, Pienkos JA, Carlton ES, Wroblewski KN, Myers AR, Trindle CO, Altun Z, Rack JJ, Wagenknecht PS (2016) Complexes with tunable intramolecular ferrocene to Ti(IV) electronic transitions: models for solid state Fe(II) to Ti(IV) charge transfer. Inorg Chem 55:2200–2211. CrossRefGoogle Scholar
  29. Villalonga BC, Vallianatou K, Georgakopoulos S, Steele BR, Micha SM, Levin E, Lemcoff NG (2013) Synthesis, characterisation, electronic spectra and electrochemical investigation of ferrocenyl-terminated dendrimers. Tetrahedron 69:3885–3895. CrossRefGoogle Scholar
  30. Wang MC, Li Y, Merbouh N, Yu H (2008) Thin-layer electrochemistry of ferrocenylbenzene derivatives: intramolecular electronic communication. Electrochim Acta. Google Scholar
  31. Wu S, Shao J, Kang H, Yao J, Zhong Y (2013a) Asymmetric mixed-valence complexes that consist of cyclometalated ruthenium and ferrocene: synthesis, characterization, and electronic-coupling studies. Chem Asian J 8:138–147. CrossRefGoogle Scholar
  32. Wu S, Shao J, Kang H, Yao J, Zhong Y (2013b) Substituent and solvent effects on the electrochemical properties and intervalence transfer in asymmetric mixed-valent complexes consisting of cyclometalated ruthenium and ferrocene. Chem Asian J 8:2843–2850. CrossRefGoogle Scholar
  33. Xie R, Han L, Zhu N, Gao Y, Hong H, Suo Q (2015) Synthesis of tetraferrocenylbenzene by cycloaddition reaction with alkyl cobalt clusters as reaction precursors. J Coord Chem 68:449–460. CrossRefGoogle Scholar
  34. Yu Y, Bond AD, Leonard PW, Lorenz UJ, Timofeeva TV, Vollhardt KP, Whitenera GD, Yakovenko AA (2006) Hexaferrocenylbenzene. Chem Commun. Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Ruo-Xuan Gao
    • 1
  • Yuan-Yuan Gao
    • 1
  • Rui-Jun Xie
    • 1
  • Li-Min Han
    • 1
    Email author
  1. 1.Chemical Engineering CollegeInner Mongolia University of TechnologyHohhotChina

Personalised recommendations