Role of ceria in several energy-related catalytic transformations

  • K. Dossumov
  • G. E. ErgazievaEmail author
  • B. T. Ermagambet
  • M. M. Telbayeva
  • M. M. Mambetova
  • L. K. Myltykbayeva
  • Zh. M. Kassenova


In this review, the focus is on the role of ceria in several reactions involving light hydrocarbons, namely total oxidation of methane, carbon monoxide hydrogenation and dehydration of ethanol to ethylene. These reactions were selected as they are relevant processes in energy chemistry, allowing obtaining valuable products.


Ceria Catalysis Methane oxidation CO hydrogenation Dehydration of ethanol 



This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan, Grant Nos. AP05132114 and BR05236359.


  1. Babu B, Reddy ChV, Shim J, Ravikumar RVSSN, Park J (2016) Effect of cobalt concentration on morphology of co-doped SnO2 nanostructures synthesized by solution combustion method. J Mater Sci Mater Electron 27:5197–5203. CrossRefGoogle Scholar
  2. Badri A, Binet C, Lavalley J-C (1996) Metal-support interaction in Pd/CeO2catalysts. Part 2. Ceria textural effects. J Chem Soc 92:1603–1608Google Scholar
  3. Barthos R, Széchenyi A, Solymosi F (2006) Decomposition and aromatization of ethanol on ZSM-based catalysts. J Phys Chem B 110(43):21816–21825. CrossRefGoogle Scholar
  4. Borisov VA, Nedosekov AS, Sigayeva SS, Suprunov GI, Vershinin VI, Tsyrulnikov PG (2015) Deep oxidation of methane on palladium catalysts on suppliers ZrO2, CeO2, ZrO2–CeO2, CeO2–CuO on stainless steel prepared with the method of plasma drawing. Procedia Eng 113:124–130. CrossRefGoogle Scholar
  5. Borowiecki T, Golebiowski A, Ryczkowski J, Stasinska B (1998) The influence of promoters on the coking rate of nickel catalysts in the steam reforming of hydrocarbons. Stud Surf Sci Cat 119:711–716. CrossRefGoogle Scholar
  6. Bulanova TF, YaT Éidus, Sergeeva NS (1967) The effect of additions of certain oxides of rare and rare-earth elements on the activities of cobalt catalysts in the synthesis of hydrocarbons from carbon monoxide and hydrogen. Bull Acad Sci USSR Div Chem Sci 16:2601–2603CrossRefGoogle Scholar
  7. Centi G, Fornasiero P, Graziani M, Kašpar J, Vazzana F (2001) Enhancement of the low temperature activity in NO reduction in lean conditions by SMSI effect in Pt/CeO2–ZrO2 on alumina catalyst. Top Catal 16:173–180. CrossRefGoogle Scholar
  8. Chen W, Kocal JA, Brandvold TA, Bricker ML, Bare SR, Broach RW, Greenlay N, Popp K, Walenga JT, Yang SS, Low JJ (2009a) Manganese oxide catalyzed methane partial oxidation in trifluoroacetic acid: catalysis and kinetic analysis. Catal Today 140:157–161. CrossRefGoogle Scholar
  9. Chen L, Zhang XW, Huang L, Lei LC (2009b) Partial oxidation of methane with air for methanol production in a post-plasma catalytic system. Chem Eng Process 48:1333–1340. CrossRefGoogle Scholar
  10. Chi M, Dou SX, Song H, Zhu Y, Ye P (1999) Different temperature dependences of photorefractive parameters of Ce-doped and Rh-doped BaTiO3. Appl Phys B 68:211–215. CrossRefGoogle Scholar
  11. Chiou JYZ, Siang J-Y, Yang S-Y, Ho K-F, Lee C-L, Yeh C-T (2012) Pathways of ethanol steam reforming over ceria-supported catalysts. Int J Hydrog Energy 37:13667–13673. CrossRefGoogle Scholar
  12. Choudhary VR, Uphade BS (2004) Oxidative conversion of methane/natural gas into higher hydrocarbons. Catal Surv Asia 8:15–25. CrossRefGoogle Scholar
  13. Daza CE, Gamba OA, Henandez Y, Centeno MA, Mondagon F, Morreno S, Molina R (2011) High-stable mesoporous Ni–Ce/clay catalysts for syngas production. Catal Lett 141:1037–1046. CrossRefGoogle Scholar
  14. Dedov AG, Loktev AS, Tel’pukhovskaya NO, Parkhomenko KV, Gerashchenko MV, Moiseev II (2010) Oxidative condensation of methane in the presence of lanthanum—cerium catalysts: fundamental character of the effect of nonadditivity. Chem Technol Fuels Oils 46:127–133. CrossRefGoogle Scholar
  15. Delimaris D, Loannides Th (2009) VOC oxidation over CuO–CeO2 catalysts by a combustion method. Appl Catal B 89:295–302. CrossRefGoogle Scholar
  16. Dexpert-Ghys J, Picard C, Taurines A (2001) Complexes of rare earths and dipicolinato ions encapsulated in X- and Y-zeolites: luminescence properties. J Incl Phenom Macro Chem 39:261–267. CrossRefGoogle Scholar
  17. Dossumov K, Popova N, Salakhova Rh, Tungatarova S, Shapovalov A, Umbetkaliev A (2010a) Desorption of hydrogen from Ni–Cu–Cr catalyst on θ + α-Al2O3 sorbent modified with cerium. Russ J Phys Chem A 84:481–484. CrossRefGoogle Scholar
  18. Dossumov K, Tungatarova S, Baizhumanova T, Popova N (2010b) Nanostructured supported Pt-, Ru- and Pt–Ru catalysts for oxidation of methane into synthesis-gas. J Alloys Comp 504:349–352. CrossRefGoogle Scholar
  19. Dossumov K, Popova N, Umbetkaliev A, Brodskii A, Tungatarova S, Zheksenbaeva Z (2012) IR spectroscopic and thermal desorption studies of the interaction of the SO2 + O2 mixture with the 9% Ni–Cu–Cr/2% Ce/(θ + α)-Al2O3 catalyst. Russ J Phys Chem A 86:1609–1613. CrossRefGoogle Scholar
  20. Dossumov K, Yergazieva GY, Myltykbaieva LK, Asanov NA (2016) Effect of Co, Ce, and La oxides as modifying additives on the activity of an NiO/γ-Al2O3 catalyst in the oxidation of methane to give synthesis gas. Theor Exp Chem 52:119–122. CrossRefGoogle Scholar
  21. Dosumov K, Ergazieva GE, Churina DK, Telbaeva MM (2014) Cerium-containing catalysts for converting ethanol into ethylene. Russ J Phys Chem A 88:1806–1808. CrossRefGoogle Scholar
  22. Dosumov K, Yergazieva GE, Churina DH, Tayrabekova SZh, Tulebayev EM (2016) Effect of the method of preparation of a supported cerium oxide catalyst on its activity in the conversion of ethanol to ethylene. Theor Exp Chem 52:123–126. CrossRefGoogle Scholar
  23. Duprez D (2014) Metal–ceria interactions in oxidation reactions in water: conflicting role of redox and basic properties of ceria-based supports. Fundamentals and applications of cerium dioxide in catalysis, UdineGoogle Scholar
  24. Eisenacher K, Adesina AA (2000) A statistical evaluation of preparation conditions on the performance of Ce- promoted Co–Mo Fischer–Tropsch catalyst. Korean J Chem Eng 17:71–75. CrossRefGoogle Scholar
  25. Eliseev OL, Tsapkina MV, Lapidus AL (2016) Fischer–Tropsch synthesis on cobalt catalysts with alkaline earth metal additives. Solid Fuel Chem 50:282–285. CrossRefGoogle Scholar
  26. Enger BC, Lødeng R, Holmen A (2010) Effects of noble metal promoters on in situ reduced low loading Ni catalysts for methane activation. Catal Lett 134:13–23. CrossRefGoogle Scholar
  27. Ergazieva GE, Dossumov K, Kuterbekov KA, Mironenko AV, Nurakhmetov TN, Ahmet O, Bekmyrza KJ, Tulibaev EM (2015) VIII international symposium “Combustion and Plasmochemistry” and scientific and technical conference “Energy efficiency”, Almaty, p 298Google Scholar
  28. Eriksson S, Rojas S, Boutonnet M, Fierro JLG (2007) Effect of Ce-doping on Rh/ZrO2 catalysts for partial oxidation of methane. Appl Catal A Gen 326:8–16. CrossRefGoogle Scholar
  29. Fathi M, Byorgum E, Viig T, Rokstad OA (2000) Partial oxidation of methane to synthesis gas: elimination of gas phase oxygen. Catal Today 63:489–497. CrossRefGoogle Scholar
  30. Gheitanchi R, Khodadadi AA, Taghizadeh M, Mortazavi Y (2006) Effects of ceria addition and pre-calcination temperature on performance of cobalt catalysts for Fischer–Tropsch synthesis. React Kinet Catal Lett 88:225–232. CrossRefGoogle Scholar
  31. Gordeev AV, Vodyankina OV (2014) Influence of the preparation procedure on the properties of supported molybdenum catalysts for ethylene and trans-butene-2 metathesis to propylene. Petrol Chem 54:452–458. CrossRefGoogle Scholar
  32. Italiano C, Luchters N, Pino L, Fletcher JV, Specchia S, Fletcher JC, Vita A (2018) High specific surface area supports for highly active Rh catalysts: syngas production from methane at high space velocity. Int J Hydrog Energy 43:11755–11765. CrossRefGoogle Scholar
  33. Kapoor MP, Ichihashi Y, Nakamori T, Matsumu Y (2004) Chemical promotional effect of gold added to palladium supported on cerium oxide in catalytic methanol decomposition. J Mol Catal A Chem 213:251–255. CrossRefGoogle Scholar
  34. Kirchnerova J, Alifanti M, Delmon B (2002) Evidence of phase cooperation in the LaCoO3–CeO2–Co3O4 catalytic system in relation to activity in methane combustion. Appl Catal A 231:65–80. CrossRefGoogle Scholar
  35. Krenzke P, Fosheim J, Zheng J, Davidson J (2016) Synthesis gas production via the solar partial oxidation of methane–ceria redox cycle: conversion, selectivity, and efficiency. Int J Hydrog Energy 41:12799–12811. CrossRefGoogle Scholar
  36. Kurungot S, Yamaguchi T (2004) Stability improvement of Rh/γ-Al2O3 catalyst layer by ceria doping for steam reforming in an integrated catalytic membrane reactor system. Catal Lett 92:181–187. CrossRefGoogle Scholar
  37. Lamonier JF, Kulyova SP, Lunin VV, Zhilinskaya EA, AboukaÎs A (2004) Thermal analysis and EPR studies of carbon black oxidation in the presence of copper loaded Y2O3–CeO2–ZrO2 catalyst. J Ther Anal Calorim 3:857–865. CrossRefGoogle Scholar
  38. Lapidus AL, Kryuchkov MV, Eliseev OL (2011) Bell-Boudoir and shift reactions under conditions of the Fischer–Tropsch synthesis. Solid Fuel Chem 45:313–315. CrossRefGoogle Scholar
  39. Leanza R, Rossetti I, Fabbrini L, Oliva C, Forni L (2000) Perovskite catalysts for the catalytic flameless combustion of methane: preparation by flame-hydrolysis and characterisation by TPD–TPR–MS and EPR. Appl Catal B 28:55–64. CrossRefGoogle Scholar
  40. Lei Y, Li W, Liu Q, Lin Q, Zheng X, Huang Q, Guan Sh, Wang X, Wang Ch, Li F (2018) Typical crystal face effects of different morphology ceria on the activity of Pd/CeO2 catalysts for lean methane combustion. Fuel 233:10–20. CrossRefGoogle Scholar
  41. Li H, Lu G, Wang Y, Yun Guo, Yanglong Guo (2010) Synthesis of flower-like La or Pr-doped mesoporous ceria microspheres and their catalytic activities for methane combustion. Catal Commun 11:946–950. CrossRefGoogle Scholar
  42. Maruya K-I (1994) Synergic enhancement effect of zirconium oxide, cerium oxide and iron or cobalt oxide on the formation of isobutene from CO and H2. Catal Lett 24:349–354. CrossRefGoogle Scholar
  43. Mattos LV, Noronha FB (2005) The influence of the nature of the metal on the performance of cerium oxide supported catalysts in the partial oxidation of ethanol. J Power Sources 152:50–59. CrossRefGoogle Scholar
  44. Mattos LV, Rodino E, Resasco DE, Passos FB, Noronha FB (2003) Partial oxidation and CO2 reforming of methane on Pt/Al2O3, Pt/ZrO2, and Pt/Ce–ZrO2 catalyst. Fuel Process Technol 83:147–161. CrossRefGoogle Scholar
  45. Mayernick AD, Janik MJ (2011) Methane oxidation on Pd–Ceria: a DFT study of the mechanism over PdxCe1−xO2, Pd, and PdO. J Catal 278:16–25. CrossRefGoogle Scholar
  46. Mioduski T (1999) Identification of saturating solid phases in the system Ce2(SO4)3–H2O from the solubility data. J Therm Anal Calorim 55:751–763. CrossRefGoogle Scholar
  47. Mishra BP, Rao GR (2002) Promoting effect of CeO2 on cyclohexanol conversion over CeO2–ZnO mixed oxide materials prepared by amorphous citrate process. Bull Mater Sci 25:155–162. CrossRefGoogle Scholar
  48. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041. CrossRefGoogle Scholar
  49. Ocsachoque M, Bengoa J, Gazzoli D, González MG (2011) Role of CeO2 in Rh/α-Al2O3 catalysts for CO2 reforming of methane. Catal Lett 141:1643–1650. CrossRefGoogle Scholar
  50. Oliva C, Termignone G, Vatti FP, Forni L, Vishniakov AV (1996) Electron paramagnetic resonance spectra of CeO2 catalyst for CO oxidation. J Mater Sci 31:6333–6338. CrossRefGoogle Scholar
  51. Olivan AM, Kremenic G, Fierro JLG (1985) Dehydration–dehydrogenation of 1- and 2-butanols on lanthanide oxide catalysts. React Kinet Catal Lett 27:53–57. CrossRefGoogle Scholar
  52. Ozawa M, Kimura M (1990) Effect of cerium addition on the thermal stability of gamma alumina support. J Mater Sci Lett 9:291–293. CrossRefGoogle Scholar
  53. Patel S, Pant KK (2007) Selective production of hydrogen via oxidative steam reforming of methanol using Cu–Zn–Ce–Al oxide catalysts. Chem Eng Sci 62:5436–5443. CrossRefGoogle Scholar
  54. Pérez-Hernández R, Gutiérrez-Martínez A, Palacios J, Vega-Hernández M, Rodríguez-Lugo V (2011) Hydrogen production by oxidative steam reforming of methanol over Ni/CeO2–ZrO2 catalysts. Int J Hydrog Energy 11:6601–6608. CrossRefGoogle Scholar
  55. Pino L, Vita A, Cordaro M, Recupero M, Hegde MS (2003) A comparative study of Pt/CeO2 catalysts for catalytic partial oxidation of methane to syngas for application in fuel cell electric vehicles. Appl Catal A 243:135–146. CrossRefGoogle Scholar
  56. Pino L, Vita A, Cipitì F, Laganà M, Recupero V (2011) Hydrogen production by methane tri-reforming process over Ni–ceria catalysts: effect of La-doping. Appl Catal B 104:64–73. CrossRefGoogle Scholar
  57. Popova NM, Salakhova RKh, Dosumov K, Tungatarova SA, Sass AS, Zheksenbaeva ZT, Komashko LV, Grigor’eva VP, Shapovalov AA (2009) Nickel–copper–chromium catalyst for selective methane oxidation to synthesis gas at short residencetimes. Kinet Catal 50:567–576. CrossRefGoogle Scholar
  58. Qiu Y, Chen J, Zhang J (2008) Effects of CeO2 and CaO composite promoters on the properties of eggshell Ni/MgO–Al2O3 catalysts for partial oxidation of methane to syngas. React Kinet Catal Lett 94:351–357. CrossRefGoogle Scholar
  59. Ramesh K, Goh YLE, Gwie CG, Jie C, White TJ, Borgna A (2012) Ethanol dehydration activity on hydrothermally stable LaPxOy catalysts synthesized using CTAB template. J Porous Mater 19:423–431. CrossRefGoogle Scholar
  60. Reddy GK, Smirniotis PG (2011) Effect of copper as a dopant on the water gas shift activity of Fe/Ce and Fe/Cr modified ferrites. Catal Lett 141:27–32. CrossRefGoogle Scholar
  61. Rodrigues LMTS, Silva Roberto B, Rocha Maria GC, Bargiela P, Noronha FB, Brandão ST (2012) Partial oxidation of methane on Ni and Pd catalysts: influence of active phase and CeO2 modification. Catal Today 197:137–143. CrossRefGoogle Scholar
  62. Roh H-S, Jun K-W, Baek S-C, Park S-E (2002) A highly active and stable catalyst for carbon dioxide reforming of methane: Ni/Ce–ZrO2/θ-Al2O3. Catal Lett 81:147–151. CrossRefGoogle Scholar
  63. Roh H-S, Platon A, Wang Y, King DL (2006) Catalyst deactivation and regeneration in low temperature ethanol steam reforming with Rh/CeO2–ZrO2 catalysts. Catal Lett 110:1–6. CrossRefGoogle Scholar
  64. Rynkowski JM, Paryjczak T, Lewicki A, Szynkowska MI, Maniecki TP, Jóźwiak WK (2000) Characterization of Ru/CeO2–Al2O3 catalysts and their performance in CO2 methanation. React Kinet Catal Lett 71:55–64. CrossRefGoogle Scholar
  65. Sadykov VA, Kuznetsova TG, Frolova-Borchert YV, Alikina GM, Lukashevich AI, Rogov VA, Muzykantov VS, Pinaeva LG, Sadovskaya EM, Ivanova YA, Paukshtis EA (2006) Fuel-rich methane combustion: role of the Pt dispersion and oxygen mobility in a fluorite-like complex oxide support. Catal Today 117:475–483. CrossRefGoogle Scholar
  66. Salasc S, Perrichon V, Primet M, Chevrier VM, Mouaddib-Moral N (2001) Measurements of oxygen species available in PtRh/CeO2–Al2O3 type industrial catalysts and relationship with their three-way catalytic activity. Top Catal 16:71–75. CrossRefGoogle Scholar
  67. Satish S (2002) Tamhaukar Narayanan Ramprasad. USP 6458334. 1 oct 2002. CAIB 31/18.CO1B 3/26Google Scholar
  68. Shan W, Luo M, Ying P, Shen W, Li C (2003) Reduction property and catalytic activity of Ce1−xNixO2 mixed oxide catalysts for CH4 oxidation. Appl Catal A 246:1–9. CrossRefGoogle Scholar
  69. Shapovalova LB, Zakumbaeva GD, Gabdrakipova AV (2003) Bimetallic Ru–Ce–Al2O3 catalysts in the Fischer–Tropsh synthesis. Petrol Chem 4:192–198Google Scholar
  70. Specchia S, Finocchio E, Busca G, Saracco G, Specchia V (2009a) Effect of S-compounds on Pd over LaMnO3 2ZrO2 and CeO2 2ZrO2 catalysts for CH4 combustion. Catal Today 143:86–93. CrossRefGoogle Scholar
  71. Specchia S, Finocchio E, Busca G, Palmisano P, Specchia V (2009b) Surface chemistry and reactivity of ceria–zirconia-supported palladium oxide catalysts for natural gas combustion. J Catal 263:134–145. CrossRefGoogle Scholar
  72. Specchia S, Conti F, Specchia V (2010) Kinetic studies on Pd/CexZr1−xO2 catalyst for methane combustion. Ind Eng Chem Res 49:11101–11111. CrossRefGoogle Scholar
  73. Stelmachowski P, Ciura K, Induka P, Kotarba A (2017) Facile synthesis of ordered CeO2 nanorod assemblies: morphology and reactivity. Mater Chem Phys 201:139–146. CrossRefGoogle Scholar
  74. Sun J, Wang Y (2014) Recentadvances in catalytic conversion of ethanol to chemicals. ACS Catal 4:1078–1090. CrossRefGoogle Scholar
  75. Takei T, Iguchi N, Haruta M (2011) Synthesis of acetoaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol. Catal Surv Asia 15:80–88. CrossRefGoogle Scholar
  76. Toso A, Colussi S, Padigapaty Sh, Leitenburg C, Trovarelli A (2018) High stability and activity of solution combustion synthesized Pd-based catalysts for methane combustion in presence of water. Appl Catal B Environ 230:237–245. CrossRefGoogle Scholar
  77. Trovarelli A, Pappacena A, Boaro M, Solcova O (2014) Ceria based materials with enhanced OSC properties for H2 production by water splitting reaction. Fundamentals and applications of cerium dioxide in catalysis, UdineGoogle Scholar
  78. Tungatarova SA (2010) Catalysts of oxidative conversion of C1–C4 alkanes up to olefins, hydrogen containing mixtures and oxygenates. Doctoral Thesis, Kazakh National University, Alma–AtaGoogle Scholar
  79. Vile G, Perez-Ramirez J (2014) Selective hydrogenation of alkynes over CeO2-based catalysts. Fundamentals and applications of cerium dioxide in catalysis, Udine, ItalyGoogle Scholar
  80. Vita A, Cristino G, Italiano C, Pino L, Specchia S (2015) Syngas production by methane oxy-steam reforming on Me/CeO2 (Me=Rh, Pt, Ni) catalyst lined on cordierite monoliths. Appl Catal B Environ 162:551–563. CrossRefGoogle Scholar
  81. Vytnova LA, Bogolepova EI, Shuikin AN, Kurkin VI, Marchevskaya EV, Kliger GA (2006) Fischer–Tropsch synthesis on aluminum oxide-and zeolite-diluted catalysts. Petrol Chem 46:103–109. CrossRefGoogle Scholar
  82. Wang H, Cong Y, Yang W (2002) Partial oxidation of methane to syngas in tubular oxygen-permeable reactor. Chinese Sci Bull 47:534–537. CrossRefGoogle Scholar
  83. Warren K, Scheffe J (2018) Kinetic insights into the reduction of ceria facilitated via the partial oxidation of methane. Mater Today Energy 9:39–48. CrossRefGoogle Scholar
  84. Watanabe S, Ma X, Song C (2009) Characterization of structural and surface properties of nanocrystalline TiO2–CeO2 mixed oxides by XRD, XPS, TPR, and TPD. J Phys Chem C 113:14249–14257. CrossRefGoogle Scholar
  85. Yakovleva IS, Banzaraktsaeva SP, Ovchinnikova EV, Chumachenko VA, Isupova LA (2016) Catalytic dehydration of bioethanol to ethylene. Catal Ind 8:152–167. CrossRefGoogle Scholar
  86. Yandieva FA, Tsodikov MV, Chistyakov AV, Kugel VY, Zubavichus YV, Veligzhanin AA, Kitaev LE, Yushchenko VV, Moiseev II (2010) Alumina-platinum catalyst in the reductive dehydration of ethanol and diethyl ether to alkanes. Kinet Catal 51:548–558. CrossRefGoogle Scholar
  87. Yang X, Da J, Yu H, Wang H (2016) Characterization and performance evaluation of Ni-based catalysts with Ce promoter for methane and hydrocarbons steam reforming process. Fuel 179:353–361. CrossRefGoogle Scholar
  88. York APE, Suhartanto T, Green MLH (1998) Influence of molybdenum and tungsten dopants on nickel catalysts for the dry reforming of methane with carbon dioxide to synthesis gas. Stud Surf Sci Catal 119:777–782. CrossRefGoogle Scholar
  89. Zhou G, Shah PR, Gorte RJ (2008) A study of cerium–manganese mixed oxides for oxidation catalysis. Catal Lett 120:191–197. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Center of Physical and Chemical Methods of Research and AnalysisAlmatyKazakhstan
  2. 2.Institute of Combustion ProblemsAlmatyKazakhstan
  3. 3.LLP Institute Chemistry of Coal and TechnologyNur-SultanKazakhstan
  4. 4.Al-Farabi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations