Advertisement

Modified electrodes based on MnO2 electrodeposited onto carbon felt: an evaluation toward supercapacitive applications

  • C. S. Santos
  • R. D. de Oliveira
  • Sudhagar Pitchaimuthu
  • L. F. MarchesiEmail author
  • C. A. PessôaEmail author
Original Paper

Abstract

This work describes the electrochemical characterization toward supercapacitive properties of a modified electrode based on MnO2 electrodeposited onto carbon felt electrode (CFE/MnO2). Raman analysis confirmed the electrode modification and FEG-SEM images showed a 3D network structure with a homogeneous deposit of the MnO2 film. The morphology of the electrodeposited film showed to be dependent on the electrodeposition applied potential and time. Cyclic voltammetry and galvanostatic charge/discharge curve results showed that the charge storage process is reversible and a combination of EDLC and pseudocapacitive behavior. Under optimized conditions (1.2 V and 600 s), the modified electrode presented a specific capacitance of 541 F g−1 in an applied current density of 0.2 A g−1, which was attributed to a favored accessibility of the electrolyte on the film porous due to morphological issues. Besides, the modified electrode revealed a good capacitance retention of 80% in an applied current density of 1.0 A g−1 after 1000 cycles.

Keywords

Carbon felt MnO2 Electrodeposition Supercapacitive properties 

Notes

Acknowledgements

We would like to thank Brazilian funding agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Araucária (Brazil) for financial support. The authors are also grateful to the Institutional Laboratory C-LABMU (UEPG).

Supplementary material

11696_2019_920_MOESM1_ESM.tif (343 kb)
Supplementary material 1 (TIFF 342 kb)
11696_2019_920_MOESM2_ESM.tif (320 kb)
Supplementary material 2 (TIFF 320 kb)
11696_2019_920_MOESM3_ESM.tif (32 kb)
Supplementary material 3 (TIFF 31 kb)
11696_2019_920_MOESM4_ESM.tif (15.5 mb)
Supplementary material 4 (TIFF 15,913 kb)
11696_2019_920_MOESM5_ESM.tif (15.5 mb)
Supplementary material 5 (TIFF 15,913 kb)
11696_2019_920_MOESM6_ESM.docx (5 mb)
Supplementary material 6 (DOCX 5124 kb)

References

  1. Arslan A, Hur E (2014) Electrochemical storage properties of polyaniline-, poly(-methylaniline), and poly(-ethylaniline)-coated pencil graphite electrodes. Chem Papers 68:504–515.  https://doi.org/10.2478/s11696-013-0475-9 CrossRefGoogle Scholar
  2. Babakhani B, Ivey DG (2011) Effect of electrodeposition conditions on the electrochemical capacitive behavior of synthesized manganese oxide electrodes. J Power Sources 196:10762–10774.  https://doi.org/10.1016/j.jpowsour.2011.08.102 CrossRefGoogle Scholar
  3. Cai J, Watanabe A, Lv C (2018) Laser direct writing of carbon-based micro-supercapacitors and electronic devices. J Laser Appl 30:032603.  https://doi.org/10.2351/1.5040648 CrossRefGoogle Scholar
  4. Capasso C, Lauria D, Veneri O (2018) Experimental evaluation of model-based control strategies of sodium-nickel chloride battery plus supercapacitor hybrid storage systems for urban electric vehicles. Appl Energy 228:2478–2489.  https://doi.org/10.1016/j.apenergy.2018.05.049 CrossRefGoogle Scholar
  5. Castañeda LF, Walsh FC, Nava JL, León CP (2017) Graphite felt as a versatile electrode material: properties, reaction environment, performance and applications. Electrochim Acta 258:1115–1139.  https://doi.org/10.1016/j.electacta.2017.11.165 CrossRefGoogle Scholar
  6. Chen Y, Zhang J, Li M, Yang C, Zhang L, Wang C, Lu H (2018) Strong interface coupling and few-crystalline MnO2/Reduced graphene oxide composites for supercapacitors with high cycle stability. Electrochim Acta 292:115–124.  https://doi.org/10.1016/j.electacta.2018.09.131 CrossRefGoogle Scholar
  7. Cherchoura N, Deslouis C, Messaoudi B, Pailleret A (2011) pH sensing in aqueous solutions using a MnO2 thin film electrodeposited on a glassy carbon electrode. Electrochim Acta 56:9746–9755.  https://doi.org/10.1016/j.electacta.2011.08.011 CrossRefGoogle Scholar
  8. Chou S-L, Wang J-Z, Chew S-Y, Liu H-K, Dou S-X (2008) Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem Commun 10:1724–1727.  https://doi.org/10.1016/j.elecom.2008.08.051 CrossRefGoogle Scholar
  9. Cross A, Morel A, Cormie A, Hollenkamp T, Donne S (2011) Enhanced manganese dioxide supercapacitor electrodes produced by electrodeposition. J Power Sources 196:7847–7853.  https://doi.org/10.1016/j.jpowsour.2011.04.049 CrossRefGoogle Scholar
  10. Dey MK, Sahoo PK, Satpati AK (2017) Electrochemically deposited layered MnO2 films for improved supercapacitor. J Electroanal Chem 788:175–183.  https://doi.org/10.1016/j.jelechem.2017.01.063 CrossRefGoogle Scholar
  11. Fan X, Wang X, Li G, Yu A, Chen Z (2016) High-performance flexible electrode based on electrodeposition of polypyrrole/MnO2 on carbon cloth for supercapacitors. J Power Sources 326:357–364.  https://doi.org/10.1016/j.jpowsour.2016.05.047Get CrossRefGoogle Scholar
  12. Gambou-Bosca A, Belanger D (2014) Effect of the formulation of the electrode on the pore texture and electrochemical performance of the manganese dioxide-based electrode for application in a hybrid electrochemical capacitor. J Mater Chem A 2:6463–6473.  https://doi.org/10.1039/C3TA14910B CrossRefGoogle Scholar
  13. Gao T, Fjellvag H, Norby P (2009) A comparison study on Raman scattering properties of α- and β-MnO2. Anal Chim Acta 648:235–239.  https://doi.org/10.1016/j.aca.2009.06.059 CrossRefPubMedGoogle Scholar
  14. Hou ZQ, Yang ZG, Gao YP (2018) Synthesis of vanadium oxides nanosheets as anode material for asymmetric supercapacitor. Chem Papers 72:2849–2857.  https://doi.org/10.1007/s11696-018-0504-9 CrossRefGoogle Scholar
  15. Jeong HT, Du JF, Kim YR, Raj CJ, Kim BC (2019) Electrochemical performances of highly stretchable polyurethane (PU) supercapacitors based on nanocarbon materials composites. J Alloys Compd 777:67–72.  https://doi.org/10.1016/j.jallcom.2018.10.232 CrossRefGoogle Scholar
  16. Jung J, Kim DH (2018) W18O49 nanowires assembled on carbon felt for application to supercapacitors. Appl Surf Sci 433:750–755.  https://doi.org/10.1016/j.apsusc.2017.10.109 CrossRefGoogle Scholar
  17. Ladrón-de-Guevara A, Boscá A, Pedrós J, Climent-Pascual E, de Andrés A, Calle F, Martínez J (2019) Reduced graphene oxide/polyaniline electrochemical supercapacitors fabricated by laser. Appl Suf Sci 467:691–697.  https://doi.org/10.1016/j.apsusc.2018.10.194 CrossRefGoogle Scholar
  18. Li M, He H (2018) Nickel-foam-supported ruthenium oxide/graphene sandwich composite constructed via one-step electrodeposition route for high-performance aqueous supercapacitors. Appl Surf Sci 439(2018):612–622.  https://doi.org/10.1016/j.apsusc.2018.01.064 CrossRefGoogle Scholar
  19. Li X, He H (2019) Hydrous RuO2 nanoparticles coated on Co(OH)2 nanoflakes as advanced electrode material of supercapacitors. Appl Surf Sci 470:306–317.  https://doi.org/10.1016/j.apsusc.2018.11.142 CrossRefGoogle Scholar
  20. Li Z, An Y, Hu Z, An N, Zhang Y, Guo B, Zhang Z, Yang Y, Wu H (2016) Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor. J Mater Chem A 4:10618–10626.  https://doi.org/10.1039/C6TA03358J CrossRefGoogle Scholar
  21. Liu S, Yao L, Lu Y, Hua X, Liu J, Yang Z, Wei H, Mai Y (2019) All-organic covalent organic framework/polyaniline composites as stable electrode for high-performance supercapacitors. Mater Lett 236:354–357.  https://doi.org/10.1016/j.matlet.2018.10.131 CrossRefGoogle Scholar
  22. Mishra RK, Krishnaih M, Kim SY, Kushwaha AK, Jin SH (2019) Ag/g-C3N4 composite nanosheets: synthesis and enhanced visible photocatalytic activities. Mater Lett 236:167–170.  https://doi.org/10.1016/j.matlet.2015.01.058 CrossRefGoogle Scholar
  23. Noce RD, Eugénio S, Silva TM, Carmezim MJ, Montemor MF (2017) Electrodeposition: a versatile, efficient, binder-free and room temperature one-step process to produce MnO2 electrochemical capacitor electrodes. RSC Adv 7:32038–32043.  https://doi.org/10.1039/C7RA04481J CrossRefGoogle Scholar
  24. Pan Z, Rao H, Mora-Seró I, Bisquert J, Zhong X (2018) Quantum dot-sensitized solar cells. Chem Soc Rev 47:7659–7702.  https://doi.org/10.1039/C8CS00431E CrossRefPubMedGoogle Scholar
  25. Qiu Y, Xu P, Guo B, Cheng Z, Fan H, Yang M, Yanga X, Lib J (2014) Electrodeposition of manganese dioxide film on activated carbon paper and its application in supercapacitors with high rate capability. RSC Adv 4:64187–64192.  https://doi.org/10.1039/C4RA11127C CrossRefGoogle Scholar
  26. Wang S, Zhou M, Wang X, Mao Y, Deng Q, Wang G (2019) Enhanced supercapacitive performance of MnOx through N2/H2 plasma treatment. Chem Papers.  https://doi.org/10.1007/s11696-019-00819-5 CrossRefGoogle Scholar
  27. Wolfart F, Brito BR, Marchesi LF, Vidotti M (2017a) Nickel-copper alloys modified electrodes: an electrochemical study on their interfacial and supercapacitive properties. J Braz Chem Soc 28:1732–1740.  https://doi.org/10.21577/0103-5053.20170021 CrossRefGoogle Scholar
  28. Wolfart F, Hryniewicz BM, Marchesi LF, Orth ES, Dubal DP, Gómez-Romero P, Vidotti M (2017b) Direct electrodeposition of imidazole modified poly(pyrrole) copolymers: synthesis, characterization and supercapacitive properties. Electrochim Acta 243:260–269.  https://doi.org/10.1016/j.electacta.2017.05.082 CrossRefGoogle Scholar
  29. Xi S, Zhu Y, Yang Y, Liu Y (2017) Direct synthesis of MnO2 on carbon cloth as flexible supercapacitor electrode. J Nanom.  https://doi.org/10.1155/2017/7340961 CrossRefGoogle Scholar
  30. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833.  https://doi.org/10.1016/j.carbon.2010.06.047 CrossRefGoogle Scholar
  31. Yang L, Cheng S, Wang J, Ji X, Jiang Y, Yao M, Wu P, Wang M, Zhou J, Liu M (2016a) Investigation into the origin of high stability of & #x03B4;-MnO2 pseudo-capacitive electrode using operando Raman spectroscopy. Nano Energy 30:293–302.  https://doi.org/10.1016/j.nanoen.2016.10.018 CrossRefGoogle Scholar
  32. Yang Q, Dong L, Xu C, Kang F (2016b) High-performance supercapacitors based on graphene/MnO2/activated carbon fiber felt composite electrodes in different neutral electrolytes. RSC Adv 6:12525–12529.  https://doi.org/10.1039/C5RA25701H CrossRefGoogle Scholar
  33. Yang J, Guo J, Guo X, Chen L (2019) In-situ growth carbon nanotubes deriving from a new metal-organic framework for high-performance all-solid-state supercapacitors. Mater Lett 236:739–742.  https://doi.org/10.1016/j.matlet.2018.11.062 CrossRefGoogle Scholar
  34. Yin X, Zhang W, Zhao X (2019) Current status and future prospects of continuously variable speed wind turbines: a systematic review. Mech Syst Sig Process 120:326–340.  https://doi.org/10.1016/j.ymssp.2018.05.063 CrossRefGoogle Scholar
  35. Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011) Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping. Nano Lett 11:4438–4442.  https://doi.org/10.1021/nl2026635 CrossRefPubMedGoogle Scholar
  36. Zhang ZH, Zhao TS, Bai BF, Zeng L, Wei L (2017) A highly active biomass derived electrode for all vanadium redox flow batteries. Electrochem Acta 249:197–205.  https://doi.org/10.1016/j.electacta.2017.07.129 CrossRefGoogle Scholar
  37. Zheng Y, Pann W, Zhengn D, Sun C (2016) Fabrication of functionalized graphene-based MnO2 nanoflower through electrodeposition for high-performance supercapacitor electrodes. J Electrochem Soc 163:D230–D238.  https://doi.org/10.1149/2.0341606jes CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversidade Estadual de Ponta GrossaParanáBrazil
  2. 2.Multi-functional Photocatalyst and Coatings Group, SPECIFIC, Materials Research Center, College of EngineeringSwansea University (Bay Campus)SwanseaUK
  3. 3.Department of Chemical EngineeringUniversidade Tecnológica Federal do ParanáParanáBrazil
  4. 4.Grupo de Pesquisas em Macromoléculas e Interfaces (GPMIn)Universidade Federal do ParanáCuritibaBrazil

Personalised recommendations