Advertisement

Application of Al2O3/AlNbO4 in the oxidation of aniline to azoxybenzene

  • Daniel C. Batalha
  • Sulusmon C. Luz
  • Jason G. Taylor
  • Humberto V. Fajardo
  • Bruno S. Noremberg
  • Igor J. S. Cherubin
  • Ricardo M. Silva
  • Margarete R. F. Gonçalves
  • Carlos P. Bergmann
  • Antoninho Valentini
  • Neftalí L. V. CarreñoEmail author
Original Paper
  • 25 Downloads

Abstract

Al2O3/AlNbO4 powder was fabricated by a facile high-energy milling process. The precursor materials, Al2O3 and Nb2O5, are readily available and have very attractive properties. Moreover, the catalytic activity of the sample in the liquid phase oxidation of aniline (OA) in the presence of hydrogen peroxide as oxidant was evaluated. The catalyst was found to be highly efficient and selective in the oxidation of aniline to azoxybenzene under mild conditions. When mixed with 28% AlNbO4 the alumina-based catalyst achieved high conversion and selectivity and very similar to the pure Nb2O5.

Keywords

Heterogeneous catalysis Aniline oxidation Azoxybenzene Simple high-energy milling Niobium 

Notes

Acknowledgements

This study was financed in pt arby the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, FAPERGS PqG 2017 (2551-0001157-0), FINEP/CT-PETRO (2653/09–01.11.0091.00) and FAPEMIG (CEX-APQ-00369-14), the Brazilian National Council for Scientific and Technological Development (CNPq). The author gratefully acknowledges the Brazilian Company of Metallurgy and Mining (CBMM) and Center for Characterization and Development of Protocols for Nanotechnology (CCDPN-SisNano/UNESP).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

  1. Acharyya SS, Ghosh S, Bal R (2014) Catalytic oxidation of aniline to azoxybenzene over CuCr2O4 spinel nanoparticle catalyst. ACS Sustainable Chem Eng 2:584–589.  https://doi.org/10.1021/sc5000545 CrossRefGoogle Scholar
  2. Carreno NLV, Deon VG, Silva RM, Santana LR, Pereira RM, Orlandi MO, Ventura WM, Dias A, Taylor GT, Fajardo HV, Mesko MF (2018) Feasible and clean solid-phase synthesis of LiNbO3 by microwave-induced combustion and its application as catalyst for low-temperature aniline oxidation. ACS Sustainable Chem Eng 6:1680–1691.  https://doi.org/10.1021/acssuschemeng.7b02921 CrossRefGoogle Scholar
  3. Chang CF, Liu ST (2009) Catalytic oxidation of anilines into azoxybenzenes on mesoporous silicas containing cobalt oxide. J Mol Catal A Chem 299:121–126.  https://doi.org/10.1016/j.molcata.2008.10.032 CrossRefGoogle Scholar
  4. Das DR, Talukdar AK (2017) Facile synthesis of titanium-loaded MCM-48 as an efficient heterogeneous catalyst for selective oxidation of aniline to azoxybenzene. Chem Select 2:8983–8989.  https://doi.org/10.1002/slct.201701581 Google Scholar
  5. De Oliveira LC, Costa NT, Pliego JR Jr, Silva AC, De Souza PP, Patrícia SDO (2014) Amphiphilic niobium oxyhydroxide as a hybrid catalyst for sulfur removal from fuel in a biphasic system. Appl Catal B Environ 147:43–48.  https://doi.org/10.1016/j.apcatb.2013.08.003 CrossRefGoogle Scholar
  6. Ghosh S, Acharyya SS, Sasaki T, Bal R (2015) Room temperature selective oxidation of aniline to azoxybenzene over a silver supported tungsten oxide nanostructured catalyst. Green Chem 17:1867–1876.  https://doi.org/10.1039/C4GC02123A CrossRefGoogle Scholar
  7. Gontier S, Tuel A (1994) Oxidation of aniline over TS-1, the titanium substituted silicalite-1. Appl Catal A Gen 118:173–186.  https://doi.org/10.1016/0926-860X(94)80312-9 CrossRefGoogle Scholar
  8. Gontier S, Tuel A (1995) Liquid-phase oxidation of aniline over various transition-metal-substituted molecular-sieves. J Catal 157:124–132.  https://doi.org/10.1006/jcat.1995.1273 CrossRefGoogle Scholar
  9. Jagtap N, Ramaswamy V (2006) Oxidation of aniline over titania pillared montmorillonite clays. Appl Clay Sci 33:89–98.  https://doi.org/10.1006/jcat.1995.1273 CrossRefGoogle Scholar
  10. Monshi A, Foroughi MR, Moshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. WJNSE 2:154–160.  https://doi.org/10.4236/wjnse.2012.23020 CrossRefGoogle Scholar
  11. Qadir MI, Scholten JD, Dupont J (2015) Ionic liquid effect: selective aniline oxidative coupling to azoxybenzene by TiO2. Catal Sci Technol 5:1459–1462.  https://doi.org/10.1039/C4CY01257G CrossRefGoogle Scholar
  12. Rodrigus R, Isoda N, Gonçalves M, Figueiredo FCA, Mandelli D, Carvalho WA (2012) Effect of niobia and alumina as support for Pt catalysts in the hydrogenolysis of glycerol. Chem Eng J 199:457–4677.  https://doi.org/10.1016/j.cej.2012.06.002 CrossRefGoogle Scholar
  13. Selvam T, Ramaswamy AV (1995) Selective catalytic oxidation of aniline to azoxybenzene over titanium silicate molecular sieves. Catal Lett 31:103–113.  https://doi.org/10.1007/BF00817037 CrossRefGoogle Scholar
  14. Shukla A, Singha RK, Konathala LS, Sasaki T, Bal R (2016) Catalytic oxidation of aromatic amines to azoxy compounds over a Cu–CeO2 catalyst using H2O2 as an oxidant. RSC Adv 6:22812–22820.  https://doi.org/10.1039/C5RA25699B CrossRefGoogle Scholar
  15. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619.  https://doi.org/10.1351/pac198557040603 CrossRefGoogle Scholar
  16. Tanabe K (2003) Catalytic application of niobium compounds. Catal Today 78:65–77.  https://doi.org/10.1016/S0920-5861(02)00343-7 CrossRefGoogle Scholar
  17. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069.  https://doi.org/10.1515/pac-2014-1117 CrossRefGoogle Scholar
  18. Trautwein G, El Bakkali B, Alcañiz-Monge J, Artetxe B, Reinoso S, Gutiérrez-Zorrilla JM (2015) Dimeric assemblies of lanthanide-stabilised dilacunary Keggin tungstogermanates: a new class of catalysts for the selective oxidation of aniline. J Catal 331:110–117.  https://doi.org/10.1016/j.jcat.2015.09.004 CrossRefGoogle Scholar
  19. Tumma H, Nagaraju N, Reddy KV (2009) Titanium (IV) oxide, an efficient and structure-sensitive heterogeneous catalyst for the preparation of azoxybenzenes in the presence of hydrogen peroxide. Appl Catal A Gen 353:54–60.  https://doi.org/10.1016/j.apcata.2008.10.046 CrossRefGoogle Scholar
  20. Ventura WM, Batalha DC, Fajardo HV, Taylor JG, Marins NH, Noremberg BS, Tanski T, Carreño NL (2017) Low temperature liquid phase catalytic oxidation of aniline promoted by niobium pentoxide micro and nanoparticles. Catal Commun 99:135–140.  https://doi.org/10.1016/j.catcom.2017.06.004 CrossRefGoogle Scholar
  21. Waghmode SB, Sabne SM, Sivasanker S (2001) Liquid phase oxidation of amines to azoxy compounds over ETS-10 molecular sieves. Green Chem 3:285–288.  https://doi.org/10.1039/B105316G CrossRefGoogle Scholar
  22. Wang Q, Wang FC, Cheng XW (2016) Electrochemical performance of aluminum niobium oxide as anode for lithium-ion batteries. Rare Met 353:256–261.  https://doi.org/10.1007/s12598-016-0690-y CrossRefGoogle Scholar
  23. Xie K, Wei W, Yu H, Deng M, Ke S, Zeng X, Li Z, Shen C, Wang J, Wei B (2016) Use of a novel layered titanoniobate as an anode material for long cycle life sodium ion batteries. Catal Today 78:65–77.  https://doi.org/10.1039/C6RA02530G Google Scholar
  24. Yang P, Fan S, Chen Z, Bao G, Zuo S, Qi C (2018) Synthesis of Nb2O5 based solid superacid materials for catalytic combustion of chlorinated VOCs. Appl Cat B Environ 239:114–124.  https://doi.org/10.1016/j.apcatb.2018.07.061 CrossRefGoogle Scholar
  25. Ziolek M, Sobczak I, Decyk P, Wolski L (2013) The ability of Nb2O5 and Ta2O5 to generate active oxygen in contact with hydrogen peroxide. Catal Commun 37:85–91.  https://doi.org/10.1016/j.catcom.2013.03.032 CrossRefGoogle Scholar
  26. Ziolek M, Sobczak I, Decyk P, Sobańska K, Pietrzyk P, Sojka Z (2015) Search for reactive intermediates in catalytic oxidation with hydrogen peroxide over amorphous niobium (V) and tantalum (V) oxides. Appl Catal B Environ 164:288–296.  https://doi.org/10.1016/j.apcatb.2014.09.024 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Daniel C. Batalha
    • 1
  • Sulusmon C. Luz
    • 1
  • Jason G. Taylor
    • 1
  • Humberto V. Fajardo
    • 1
  • Bruno S. Noremberg
    • 2
  • Igor J. S. Cherubin
    • 2
  • Ricardo M. Silva
    • 2
  • Margarete R. F. Gonçalves
    • 2
  • Carlos P. Bergmann
    • 3
  • Antoninho Valentini
    • 4
  • Neftalí L. V. Carreño
    • 2
    Email author
  1. 1.Department of Chemistry, Institute of Exact and Biological SciencesFederal University of Ouro PretoOuro PretoBrazil
  2. 2.Graduate Program in Materials Science and Engineering, Technology Development CenterFederal University of PelotasPelotasBrazil
  3. 3.Graduate Program in Mining, Metallurgical and Materials Engineering, Department of MaterialsFederal University of Rio Grande do SulPorto AlegreBrazil
  4. 4.Department of Analytical Chemistry and Physical ChemistryFederal University of CearaFortalezaBrazil

Personalised recommendations