Advertisement

Chemical Papers

, Volume 74, Issue 2, pp 459–470 | Cite as

Bio-ceramic, mesoporous cuttlebone of Sepia officinalis is an ideal support for the immobilization of Bacillus subtilis AKL13 lipase: optimization, adsorption, thermodynamic and reaction kinetic studies

  • Karthikumar Sankar
  • Anant AcharyEmail author
Original Paper
  • 33 Downloads

Abstract

Mesoporous cuttlebone powder of Sepia officinalis (CBP) was characterized and used as matrix for the immobilization of Bacillus subtilis AKL 13 lipase (BsL). Particle size and surface area of the matrix used for enzyme immobilization were 89.95 µm and 1.631 m2 g−1, respectively. Remarkable thermostability (54% of weight loss at 700 °C) of CBP was determined in TGA profile. The lipase immobilization process parameters were sequentially optimized by response surface methodology followed by artificial neural network and genetic algorithm. The maximum lipase loading capacity of CBP was 255 mg g−1 of support. Immobilized lipase (CBP-BsL) showed maximum specific activity of 5808 U mg−1 of protein in p-nitrophenol palmitate hydrolysis. Adsorption isotherm study revealed that the binding of lipase on the surface of CBP was Langmuir and the binding was physical adsorption. CBP-BsL showed lower activation energy (51.4 KJ mol−1) and higher thermal stability with half-lives of 13.3 h at 50 °C. Higher activity retention in nonpolar solvents and 69% of operational stability after 15 cycle of reaction were measured.

Keywords

Sepia officinalis Cuttlebone Bacillus subtilis AKL 13 Lipase Immobilization Optimization 

Notes

Acknowledgements

The authors gratefully acknowledge the management of Kamaraj College of Engineering and Technology, Virudhunagar-626001, Tamil Nadu, India, for the support of research facilities.

Supplementary material

11696_2019_891_MOESM1_ESM.docx (165 kb)
Supplementary material 1 (DOCX 164 kb)

References

  1. Adeogun AI, Kareeem SO, Adebayo OS, Balogun SA (2017) Comparative adsorption of amylase, protease and lipase on ZnFe(2)O(4): kinetics, isothermal and thermodynamics studies. 3 Biotech 7:198.  https://doi.org/10.1007/s13205-017-0859-6 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adlercreutz P (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42:6406–6436.  https://doi.org/10.1039/c3cs35446f CrossRefGoogle Scholar
  3. Amirkhani L, Moghaddas J, Jafarizadeh-Malmiri H (2016) Candida rugosa lipase immobilization on magnetic silica aerogel nanodispersion. RSC Adv 6:12676–12687.  https://doi.org/10.1039/c5ra24441b CrossRefGoogle Scholar
  4. Balcar H, Čejka J, Sedláček J, Svoboda J, Bastl Z, Pacovská M, Vohlídal J (2003) Mesoporous molecular sieves immobilized catalysts for polymerization of phenylacetylene and its derivatives. In: Imamoglu Y, Bencze L (eds) Novel metathesis chemistry: well-defined initiator systems for specialty chemical synthesis, tailored polymers and advanced material applications. Springer, Netherlands, pp 155–165.  https://doi.org/10.1007/978-94-010-0066-6_11 CrossRefGoogle Scholar
  5. Biji GD, Arun A, Muthulakshmi E, Vijayaraghavan P, Arasu MV, Al-Dhabi NA (2016) Bio-prospecting of cuttle fish waste and cow dung for the production of fibrinolytic enzyme from Bacillus cereus IND5 in solid state fermentation. 3 Biotech 6:231.  https://doi.org/10.1007/s13205-016-0553-0 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brito MJP, Veloso CM, Bonomo RCF, Fontan RDCI, Santos LS, Monteiro KA (2017) Activated carbons preparation from yellow mombin fruit stones for lipase immobilization. Fuel Process Technol 156:421–428.  https://doi.org/10.1016/j.fuproc.2016.10.003 CrossRefGoogle Scholar
  7. Cadman J, Zhou S, Chen Y, Li Q (2012) Cuttlebone: characterisation, application and development of biomimetic materials. J Bionic Eng 9:367–376.  https://doi.org/10.1016/S1672-6529(11)60132-7 CrossRefGoogle Scholar
  8. da Silva TM, Pessela BC, da Silva JCR, Lima MS, Jorge JA, Guisan JM, Polizeli MdLTM (2014) Immobilization and high stability of an extracellular β-glucosidase from Aspergillus japonicus by ionic interactions. J Mol Catal B Enzym 104:95–100.  https://doi.org/10.1016/j.molcatb.2014.02.018 CrossRefGoogle Scholar
  9. Díaz Ramos M, Giraldo Gómez GI, Sanabria González N (2014) Immobilization of Candida rugosa lipase on bentonite modified with benzyltriethylammonium chloride. J Mol Catal B Enzym 99:79–84.  https://doi.org/10.1016/j.molcatb.2013.10.021 CrossRefGoogle Scholar
  10. Dong H, Li J, Li Y, Hu L, Luo D (2012) Improvement of catalytic activity and stability of lipase by immobilization on organobentonite. Chem Eng J 181–182:590–596.  https://doi.org/10.1016/j.cej.2011.11.095 CrossRefGoogle Scholar
  11. Dong H, Li Y, Li J, Sheng G, Chen H (2013) Comparative study on lipases immobilized onto bentonite and modified bentonites and their catalytic properties. Ind Eng Chem Res 52:9030–9037.  https://doi.org/10.1021/ie4001986 CrossRefGoogle Scholar
  12. Fan M, Li T, Hu J, Cao R, Wei X, Shi X, Ruan W (2017) Artificial neural network modeling and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Materials (Basel) 10:544.  https://doi.org/10.3390/ma10050544 CrossRefGoogle Scholar
  13. Fatiha B, Sameh B, Youcef S, Zeineddine D, Nacer R (2013) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in optimization of the immobilization conditions for lipase from Candida rugosa on Amberjet((R)) 4200-Cl. Prep Biochem Biotechnol 43:33–47.  https://doi.org/10.1080/10826068.2012.693899 CrossRefPubMedGoogle Scholar
  14. Ghodsinia SSE, Akhlaghinia B, Jahanshahi R (2016) Direct access to stabilized CuI using cuttlebone as a natural-reducing support for efficient CuAAC click reactions in water. RSC Adv 6:63613–63623.  https://doi.org/10.1039/c6ra13314b CrossRefGoogle Scholar
  15. Gholamzadeh P, Mohammadi Ziarani G, Badiei A (2017) Immobilization of lipases onto the SBA-15 mesoporous silica. Biocatalysis Biotransform.  https://doi.org/10.1080/10242422.2017.1308495 CrossRefGoogle Scholar
  16. Gricajeva A, Bendikiene V, Kalediene L (2016) Lipase of Bacillus stratosphericus L1: cloning, expression and characterization. Int J Biol Macromol 92:96–104.  https://doi.org/10.1016/j.ijbiomac.2016.07.015 CrossRefPubMedGoogle Scholar
  17. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781.  https://doi.org/10.1007/s00253-004-1568-8 CrossRefPubMedGoogle Scholar
  18. Jacoby J, Pasc A, Carteret C, Dupire F, Stébé MJ, Coupard V, Blin JL (2013) Ordered mesoporous materials containing Mucor Miehei Lipase as biocatalyst for transesterification reaction. Process Biochem 48:831–837.  https://doi.org/10.1016/j.procbio.2013.04.003 CrossRefGoogle Scholar
  19. Jia X, Qian W, Wu D, Wei D, Xu G, Liu X (2009) Cuttlebone-derived organic matrix as a scaffold for assembly of silver nanoparticles and application of the composite films in surface-enhanced Raman scattering. Colloids Surf B 68:231–237.  https://doi.org/10.1016/j.colsurfb.2008.10.017 CrossRefGoogle Scholar
  20. Lage FA, Bassi JJ, Corradini MC, Todero LM, Luiz JH, Mendes AA (2016a) Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enzyme Microb Technol 84:56–67.  https://doi.org/10.1016/j.enzmictec.2015.12.007 CrossRefPubMedGoogle Scholar
  21. Lage FAP, Bassi JJ, Corradini MCC, Todero LM, Luiz JHH, Mendes AA (2016b) Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enzyme Microbial Technol 84:56–67.  https://doi.org/10.1016/j.enzmictec.2015.12.007 CrossRefGoogle Scholar
  22. Lorenzoni ASG, Graebin NG, Martins AB, Fernandez-Lafuente R, Ayub MAZ, Rodrigues RC (2012) Optimization of pineapple flavour synthesis by esterifcation catalysed by immobilized lipase from Rhizomucor miehei. Flavour Fragrance J 27:196–200.  https://doi.org/10.1002/ffj.3088 CrossRefGoogle Scholar
  23. Macha IJ, Ben-Nissan B (2018) Marine skeletons: towards hard tissue repair and regeneration. Mar Drugs.  https://doi.org/10.3390/md16070225 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Manoel EA, dos Santos JCS, Freire DMG, Rueda N, Fernandez-Lafuente R (2015) Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microbial Technol 71:53–57.  https://doi.org/10.1016/j.enzmictec.2015.02.001 CrossRefGoogle Scholar
  25. Miranda JS, Silva NCA, Bassi JJ, Corradini MCC, Lage FAP, Hirata DB, Mendes AA (2014) Immobilization of Thermomyces lanuginosus lipase on mesoporous poly-hydroxybutyrate particles and application in alkyl esters synthesis: isotherm, thermodynamic and mass transfer studies. Chem Eng J 251:392–403.  https://doi.org/10.1016/j.cej.2014.04.087 CrossRefGoogle Scholar
  26. Olusesan AT et al (2011) Purification, characterization and thermal inactivation kinetics of a non-regioselective thermostable lipase from a genotypically identified extremophilic Bacillus subtilis NS 8. New Biotechnol 28:738–745.  https://doi.org/10.1016/j.nbt.2011.01.002 CrossRefGoogle Scholar
  27. Orrego CE, Valencia JS, Zapata C (2009) Candida rugosa lipase supported on high crystallinity chitosan as biocatalyst for the synthesis of 1-butyl oleate. Catal Lett 129:312.  https://doi.org/10.1007/s10562-009-9857-6 CrossRefGoogle Scholar
  28. Pahujani S, Kanwar SS, Chauhan G, Gupta R (2008) Glutaraldehyde activation of polymer Nylon-6 for lipase immobilization: enzyme characteristics and stability. Bioresour Technol 99:2566–2570.  https://doi.org/10.1016/j.biortech.2007.04.042 CrossRefPubMedGoogle Scholar
  29. Palaveniene A, Tamburaci S, Kimna C, Glambaite K, Baniukaitiene O, Tihminlioglu F, Liesiene J (2019) Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite. J Biomater Appl 33:876–890.  https://doi.org/10.1177/0885328218811040 CrossRefPubMedGoogle Scholar
  30. Periasamy K, Mohankumar GC (2015) Sea coral-derived cuttlebone reinforced epoxy composites: characterization and tensile properties evaluation with mathematical models. J Compos Mater 50:807–823.  https://doi.org/10.1177/0021998315581512 CrossRefGoogle Scholar
  31. Poompradub S, Ikeda Y, Kokubo Y, Shiono T (2008) Cuttlebone as reinforcing filler for natural rubber. Eur Polymer J 44:4157–4164.  https://doi.org/10.1016/j.eurpolymj.2008.09.015 CrossRefGoogle Scholar
  32. Raghuvanshi S, Gupta R (2010) Advantages of the immobilization of lipase on porous supports over free enzyme. Protein Pept Lett 17:1412–1416CrossRefGoogle Scholar
  33. Rodrigues D, Cavalcante G, Ferreira A, Gonçalves L (2008) Immobilization of Candida antarctica lipase type B by adsorption on activated carbon. Chem Biochem Eng Q 22:9Google Scholar
  34. Saleem M, Rashid MH, Jabbar A, Perveen R, Khalid AM, Rajoka MI (2005) Kinetic and thermodynamic properties of an immobilized endoglucanase from Arachniotus citrinus. Process Biochem 40:849–855.  https://doi.org/10.1016/j.procbio.2004.02.026 CrossRefGoogle Scholar
  35. Sankar K, Achary A (2017) Synthesis of feruloyl ester using Bacillus subtilis AKL 13 Lipase Immobilized on Celite(R) 545. Food Technol Biotechnol 55:542–552CrossRefGoogle Scholar
  36. Sankar K, Achary A, Mehala N, Rajendran L (2017) Empirical and analytical correlation of the reaction kinetics parameters of cuttle bone powder immobilized lipase catalyzed ethyl ferulate synthesis. Catal Lett 147:2232–2245.  https://doi.org/10.1007/s10562-017-2108-3 CrossRefGoogle Scholar
  37. Singh AK, Mukhopadhyay M (2014) Immobilization of Candida antarctica lipase onto cellulose acetate-coated Fe2O3 nanoparticles for glycerolysis of olive oil. Korean J Chem Eng 31:1225–1232.  https://doi.org/10.1007/s11814-014-0020-8 CrossRefGoogle Scholar
  38. Souissi N, Ellouz-Triki Y, Bougatef A, Blibech M, Nasri M (2008) Preparation and use of media for protease-producing bacterial strains based on by-products from Cuttlefish (Sepia officinalis) and wastewaters from marine-products processing factories. Microbiol Res 163:473–480.  https://doi.org/10.1016/j.micres.2006.07.013 CrossRefPubMedGoogle Scholar
  39. Tran DT, Chen CL, Chang JS (2012) Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. J Biotechnol 158:112–119CrossRefGoogle Scholar
  40. Ulker C, Gokalp N, Guvenilir Y (2016) Immobilization of Candida antarctica lipase B (CALB) on surface-modified rice husk ashes (RHA) via physical adsorption and cross-linking methods. Biocatal Biotransform 34:172–180.  https://doi.org/10.1080/10242422.2016.1247818 CrossRefGoogle Scholar
  41. van Pouderoyen G, Eggert T, Jaeger K-E, Dijkstra BW (2001) The crystal structure of Bacillus subtilis lipase: a minimal α/β hydrolase fold enzyme1. J Mol Biol 309:215–226.  https://doi.org/10.1006/jmbi.2001.4659 CrossRefPubMedGoogle Scholar
  42. Yu WH, Tong DS, Fang M, Shao P, Zhou CH (2015) Immobilization of Candida rugosa lipase on MSU-H type mesoporous silica for selective esterification of conjugated linoleic acid isomers with ethanol. J Mol Catal B Enzym 111:43–50.  https://doi.org/10.1016/j.molcatb.2014.11.003 CrossRefGoogle Scholar
  43. Yücel Y (2012) Optimization of immobilization conditions of Thermomyces lanuginosus lipase on olive pomace powder using response surface methodology. Biocatal Agric Biotechnol 1:39–44.  https://doi.org/10.1016/j.bcab.2011.08.009 CrossRefGoogle Scholar
  44. Yücel Y, Demir C, Dizge N, Keskinler B (2011) Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase. Biomass Bioenerg 35:1496–1501.  https://doi.org/10.1016/j.biombioe.2010.12.018 CrossRefGoogle Scholar
  45. Zdarta J et al (2014) Immobilization of Amano Lipase A onto Stöber silica surface: process characterization and kinetic studies. Open Chem 13:1.  https://doi.org/10.1515/chem-2015-0017 CrossRefGoogle Scholar
  46. Zeng H-Y, Liu X-Y, He P, Peng D-H, Fan B, Xia K (2014) Lipase adsorption on woven nylon-6 membrane: Optimization, kinetic and thermodynamic analyses. Biocatal Biotransform 32:188–197.  https://doi.org/10.3109/10242422.2014.895334 CrossRefGoogle Scholar
  47. Zhou L, Wan J, Cao X (2010) Synthesis of thermo-sensitive copolymer with affinity butyl ligand and its application in lipase purification. J Chromatogr B Analyt Technol Biomed Life Sci 878:1025–1030CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyKamaraj College of Engineering and TechnologyMaduraiIndia

Personalised recommendations