Advertisement

A novel colloidal deposition method to prepare copper nanoparticles/polystyrene nanocomposite with antibacterial activity and its comparison to the liquid-phase in situ reduction method

  • 25 Accesses

Abstract

Here, we study a simple and effective colloidal deposition method (D) to synthesize a type of core–shell structure composed of copper nanoparticles/polystyrene (CuNPs/PS) microsphere nanocomposite. CuNPs/PS nanocomposite can effectively avoid the agglomeration and oxidation of CuNPs, while retaining its original antibacterial ability, prolonging the service life of antibacterial materials and improving the practical value of Copper in the antibacterial field. The CuNPs with controllable size and excellent stability are successfully synthesized by the double-template method using polyvinylpyrrolidone–sodium dodecylbenzene sulfonate (PVP–SDBS) as template. Compared to the traditional in situ reduction method (R), the novel colloidal deposition method (D) does not involve any surface pretreatment of the PS microspheres, and the size of the CuNPs loaded on the surface of the support PS microspheres can be conveniently controlled. Therefore, we believe that this method is relatively simple and easy to operate, and it is more practical. In addition, the CuNPs/PS (D) nanocomposite has better antibacterial activity and oxidation resistance than the CuNPs/PS (R) nanocomposite, the symbols D and R mean the CuNPs/PS prepared by the novel colloidal deposition method and the liquid-phase in situ reduction method, respectively. Moreover, both the synthesis mechanism of the double-template method and the mechanism for the superiority of colloidal deposition method are examined. The findings of this study provide new ideas for controllably loading metal nanoparticles on polymeric microspheres.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Akhavan O, Ghaderi E (2010) Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf Coat Tech 205:219–223. https://doi.org/10.1016/j.surfcoat.2010.06.036

  2. Al-Saleh MH, Gelves GA, Sundararaj U (2011) Copper nanowire/polystyrene nanocomposites: lower percolation threshold and higher EMI shielding. Compos Part A Appl Sci Manuf 42:92–97. https://doi.org/10.1016/j.compositesa.2010.10.003

  3. Bi Y, Ren H, Chen B (2012) Synthesis monolithic copper-based aerogel with polyacrylic acid as template. J Sol-Gel Sci Technol 63(1):140–145. https://doi.org/10.1007/s10971-012-2777-8

  4. Chen CW, Chen MQ (1998) In situ synthesis and the catalytic properties of platinum colloids on polystyrene microspheres with surface-grafted poly (N-isopropylacrylamide). Chem Commun 7:831–832. https://doi.org/10.1039/A800203G

  5. Chen CW, Chen MQ, Serizawa T, Akashi M (1998) In-Situ formation of silver nanoparticles on poly(N-isopropylacrylamide)-coated polystyrene microspheres. Adv Mater 10:1122–1126. https://doi.org/10.1002/(SICI)1521-4095(199810)10:143.0.CO;2-N

  6. Chou TM, Chan SW, Lin YJ (2019) A highly efficient Au-MoS2 nanocatalyst for tunable piezocatalytic and photocatalytic water disinfection. Nano Energy 57:14–21. https://doi.org/10.1016/j.nanoen.2018.12.006

  7. Cu TS, Cao VD, Nguyen CK, Tran NQ (2014) Preparation of silver core-chitosan shell nanoparticles using catechol-functionalized chitosan and antibacterial studies. Macromol Res 22:418–423. https://doi.org/10.1007/s13233-014-2054-5

  8. Dokoutchaev A, James JT, Koene SC, Pathak S, Prakash GS, Thompson ME (1999) Colloidal metal deposition onto functionalized polystyrene microspheres. Chem Mater 11:2389–2399. https://doi.org/10.1021/cm9900352

  9. Ghodselahi T, Vesaghi MA, Shafiekhani A, Baghizadeh A, Lameii M (2008) XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci 255:2730–2734. https://doi.org/10.1016/j.apsusc.2008.08.110

  10. Gholinejad M, Saadati F, Shaybanizadeh S, Pullithadathil B (2016) Copper nanoparticles supported on starch micro particles as a degradable heterogeneous catalyst for three-component coupling synthesis of propargylamines. RSC Adv 6:4983–4991. https://doi.org/10.1039/c5ra22292c

  11. Gurav KV, Patil UM, Shin SW, Agawane GL, Suryawanshi MP, Pawar SM, Kim JH (2013) Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application. J Alloy Compd 573:27–31. https://doi.org/10.1016/j.jallcom.2013.03.193

  12. Hong SC, Shin KE, Noh SK, Lyoo WS (2005) Cu catalyst system with phosphorous containing bidendate ligand for living radical polymerization of MMA. Macromol Res 13:391–396. https://doi.org/10.1007/bf03218471

  13. Hüfner S, Wertheim GK, Smith NV, Traum MM (1972) XPS density of states of copper, silver, and nickel. Solid State Commun 11:323–326. https://doi.org/10.1016/0038-1098(72)90242-6

  14. Ithurria S, Talapin DV (2012) Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J Am Chem Soc 134:18585–18590. https://doi.org/10.1021/ja308088d

  15. Jung DR, King DE, Czanderna AW (1993) Metal overlayers on organic functional groups of self-organized molecular assemblies. II. X-ray photoelectron spectroscopy of interactions of Cu/CN on 12-mercaptododecanenitrile. J Vac Sci Technol A 11:2382–2386. https://doi.org/10.1116/1.578338

  16. Kamrupi IR, Dolui SK (2011) Synthesis of copper–polystyrene nanocomposite particles using water in supercritical carbon dioxide medium and its antimicrobial activity. J Appl Polym Sci 120:1027–1033. https://doi.org/10.1002/app.33230

  17. Kang YM, Park MS, Lee JY, Liu HK (2007) Si–Cu/carbon composites with a core–shell structure for Li-ion secondary battery. Carbon 45:1928–1933. https://doi.org/10.1016/j.carbon.2007.06.016

  18. Kim C, Kim SY, Yong TL, Lee TS (2017) Synthesis of conjugated polymer nanoparticles with core–shell structure for cell imaging and photodynamic cancer therapy. Macromol Res 25:1–6. https://doi.org/10.1007/s13233-017-5104-y

  19. Li CM, Lei H, Tang YJ, Luo JS, Liu W, Chen ZM (2004) Production of copper nanoparticles by the flow-levitation method. Nanotechnology 15:1866. https://doi.org/10.1088/0957-4484/15/12/031

  20. Li H, Kang W, Xi B, Yan Y, Bi H, Zhu Y, Qian Y (2010) Thermal synthesis of Cu@ carbon spherical core–shell structures from carbonaceous matrices containing embedded copper particles. Carbon 48:464–469. https://doi.org/10.1016/j.carbon.2009.09.063

  21. Li H, Li C, Bai J, Zhang C, Sun W (2014a) Carbon nanofiber supported copper nanoparticles catalyzed Ullmann-type coupling reactions under ligand-free conditions. RSC Adv 4:48362–48367. https://doi.org/10.1039/c4ra07184k

  22. Li Y, Tang X, Zhang Y, Li J, Lv C, Meng X, Wang C (2014b) Cu nanoparticles of low polydispersity synthesized by a double-template method and their stability. Colloid Polym Sci 292:715–722. https://doi.org/10.1007/s00396-013-3123-6

  23. Li B, Li Y, Wu Y, Zhao Y (2014c) Synthesis of water-soluble Cu/PAA composite flowers and their antibacterial activities. Mat Sci Eng C Mater 35:205–211. https://doi.org/10.1016/j.msec.2013.11.006

  24. Li Y, Wu Z, Ye S (2015) Highly facile and efficient assembly of palladium nanoparticles on polystyrene microspheres and their application in catalysis. New J Chem 39:8108–8113. https://doi.org/10.1039/c5nj01521a

  25. Lin JH, Tsao YH, Wu MH (2017) Single-and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor. Nano Energy 31:575–581. https://doi.org/10.1016/j.nanoen.2016.12.013

  26. Lin YJ, Chou TM, Lin ZH (2018) Multifunctional MoS2 nanocatalysts for water disinfection. ECS Trans 85(9):47–51. https://doi.org/10.1149/08509.0047ecst

  27. Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci 106(20):8344–8349. https://doi.org/10.1073/pnas.0812808106

  28. Mahmoud MA, Snyder B, Elsayed MA (2009) Polystyrene microspheres: inactive supporting material for recycling and recovering colloidal nanocatalysts in solution. J Phys Chem Lett 1:28–31. https://doi.org/10.1021/jz9000449

  29. Mani S, Weiss RA, Williams CE, Hahn SF (1999) Microstructure of ionomers based on sulfonated block copolymers of polystyrene and poly(ethylene-alt-propylene). Macromolecules 32:3663–3670. https://doi.org/10.1021/ma9900986

  30. Martins CR, Ruggeri G, Paoli MAD (2003) Synthesis in pilot plant scale and physical properties of sulfonated polystyrene. J Braz Chem Soc 14:797–802. https://doi.org/10.1590/s0103-50532003000500015

  31. Nador F, Volpe MA, Alonso F, Feldhoff A, Krischning A, Radivoy G (2013) Copper nanoparticles supported on silica coated maghemite as versatile, magnetically recoverable and reusable catalyst for alkyne coupling and cycloaddition reactions. Appl Catal A Gen 455:39–45. https://doi.org/10.1016/j.apcata.2013.01.023

  32. Ni Z, Wang Z, Sun L, Li B, Zhao Y (2014) Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities. Mat Sci Eng C Mater 41:249–254. https://doi.org/10.1016/j.msec.2014.04.059

  33. Nirmala R, Kim HY, Kalpana D, Navamathavan R, Lee YS (2013) Multipurpose polyurethane antimicrobial metal composite films via wet; cast technology. Macromol Res 21:843–851. https://doi.org/10.1007/s13233-013-1113-7

  34. Paladini F, Pollini M, Sannino A, Ambrosio L (2015) Metal-based antibacterial substrates for biomedical applications. Biomacromolecules 16:1873–1885. https://doi.org/10.1021/acs.biomac.5b00773

  35. Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116. https://doi.org/10.3390/ijms16012099

  36. Park H, Han TH (2014) Facile hybridization of graphene oxide and Cu2O for high-performance electrochemical supercapacitors. Macromol Res 22:809–812. https://doi.org/10.1007/s13233-014-2131-9

  37. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982. https://doi.org/10.1103/PhysRev.56.978

  38. Peceros KE, Xu X, Bulcock SR (2005) Dipole-dipole plasmon interactions in gold-on-polystyrene composites. J Phys Chem B 109(46):21516–21520. https://doi.org/10.1021/jp0523470

  39. Potara M, Jakab E, Damert A, Popescu O, Canpean V, Astilean S (2011) Synergistic antibacterial activity of chitosan–silver nanocomposites on Staphylococcus aureus. Nanotechnology 22:135101. https://doi.org/10.1088/0957-4484/22/13/135101

  40. Qi C, Ye J, Zeng W, Jiang H (2010) Polystyrene-supported amino acids as efficient catalyst for chemical fixation of carbon dioxide. Adv Synth Catal 352:1925–1933. https://doi.org/10.1002/adsc.201000261

  41. Quaranta D, Krans T, Santo CE (2011) Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl Environ Microbiol 77(2):416–426. https://doi.org/10.1128/AEM.01704-10

  42. Rubinger CPL, Martins CR, Paoli MAD, Rubinger MA (2007) Sulfonated polystyrene polymer humidity sensor: synthesis and characterization. Sens Actuators B Chem 123:42–49. https://doi.org/10.1016/j.snb.2006.07.019

  43. Santo CE, Lam EW, Elowsky CG (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77(3):794–802. https://doi.org/10.1128/AEM.01599-10

  44. Sugawa K, Yamaguchi D, Tsunenari N (2016) Efficient photocurrent enhancement from porphyrin molecules on plasmonic copper arrays: beneficial utilization of copper nanoantennae on plasmonic photoelectric conversion systems. ACS Appl Mater Interfaces 9(1):750–762. https://doi.org/10.1021/acsami.6b13147

  45. Tian K, Liu C, Yang H, Ren X (2012) In situ synthesis of copper nanoparticles/polystyrene composite. Colloid Surface A 397:12–15. https://doi.org/10.1016/j.colsurfa.2012.01.019

  46. Veerakumar P, Velayudham M, Lu KL, Rajagopal S (2011) Highly dispersed silica-supported nanocopper as an efficient heterogeneous catalyst: application in the synthesis of 1, 2, 3-triazoles and thioethers. Catal Sci Technol 1:1512–1525. https://doi.org/10.1039/c1cy00300c

  47. Wang P, Chen D, Tang FQ (2006) Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis. Langmuir 22:4832–4835. https://doi.org/10.1021/la060112p

  48. Wang J, Zhu H, Chen JD, Zhang B, Zhang M, Wang LN, Du ML (2016) Small and well-dispersed Cu nanoparticles on carbon nanofibers: self-supported electrode materials for efficient hydrogen evolution reaction. Int J Hydrogen Energy 41:18044–18049. https://doi.org/10.1016/j.ijhydene.2016.08.058

  49. Warnes SL, Keevil CW (2011) Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact. Appl Environ Microbiol 77(17):6049–6059. https://doi.org/10.1128/AEM.00597-11

  50. Warnes SL, Caves V, Keevil CW (2012) Mechanism of copper surface toxicity in Escherichia coli O157: H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ Microbiol 14(7):1730–1743. https://doi.org/10.1111/j.1462-2920.2011.02677.x

  51. Yang J, Chen J, Zhou Y, Wu K (2011) a nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand. Sens Actuators B Chem 153:78–82. https://doi.org/10.1016/j.snb.2010.10.015

  52. Yu HL, Xu BS, Xu Y, Wang XL, Qi Liu (2005) Design of wear-out-failure in situ repair parts by environment-friendly nanocopper additive. J Cent South Univ Technol 12:215–220. https://doi.org/10.1007/s11771-005-0044-7

  53. Yu S, Park K, Lee JW, Hong SM, Park C, Han TH (2017a) Enhanced thermal conductivity of epoxy/Cu-plated carbon fiber fabric composites. Macromol Res 25:559–564. https://doi.org/10.1007/s13233-017-5114-9

  54. Yu Q, Li M, Zeng Q, Wu X (2017b) Highly porous copper with hollow microsphere structure from polystyrene templates via electroless plating. J Electrochem Soc 164:D135–D142. https://doi.org/10.1149/2.0271704jes

  55. Yu Y, Luan D, Bi C, Ma Y, Chen Y, Zhao D (2018) Synthesis of polystyrene microsphere-supported Ag–Ni-alloyed catalysts with core–shell structures for electrocatalytic performance. Polym Plast Technol Eng 57:875–883. https://doi.org/10.1080/03602559.2017.1354250

  56. Zhang H, Zhong X, Xu JJ, Chen HY (2008) Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties. Langmuir 24:13748–13752. https://doi.org/10.1021/la8028935

  57. Zhao Y, Feng J, Hong L, Li Y, Wang C, Ye S (2018) Simple surface-assisted formation of palladium nanoparticles on polystyrene microspheres and their application in catalysis. Inorg Chem Front 5:1133–1138. https://doi.org/10.1039/c8qi00085a

  58. Zhong Z, Yin Y, Gates B, Xia Y (2000) Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv Mater 12:206–209. https://doi.org/10.1002/(SICI)1521-4095(200002)12:3%3c206:AID-ADMA206%3e3.0.CO;2-5

  59. Zhou S, Varughese B, Eichhorn B, Jackson G, McIlwrath K (2005) Pt–Cu core–shell and alloy nanoparticles for heterogeneous NOx reduction: anomalous stability and reactivity of a core–shell nanostructure. Angew Chem Int Edit 117:4615–4619. https://doi.org/10.1002/ange.200500919

Download references

Acknowledgements

This work was supported by Harbin Scientific and Technological Special Fund for Innovative Talents (Grant No. 2012RFXXG093).

Author information

Correspondence to Dongyu Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Chen, Y., Huang, J. et al. A novel colloidal deposition method to prepare copper nanoparticles/polystyrene nanocomposite with antibacterial activity and its comparison to the liquid-phase in situ reduction method. Chem. Pap. 74, 471–483 (2020). https://doi.org/10.1007/s11696-019-00888-6

Download citation

Keywords

  • Colloidal deposition method
  • Core–shell structure
  • Nanocomposite
  • Antibacterial activity
  • Resistance to oxidation