Advertisement

Evaluation of nanomanganese decorated typha tassel carbonaceous electrode: preparation, characterization, and simultaneous determination of Cd2+ and Pb2+

  • Mustafa Güleşen
  • Aslı Erkal-Aytemur
  • Samet Yavuz
  • Abdullah Akbulut
  • İ. Afşin KariperEmail author
  • İlknur ÜstündağEmail author
Original Paper
  • 10 Downloads

Abstract

In this study, manganese dioxide decorated typha tassel carbonized material was prepared. The pyrolysis of the carbonaceous material occurred in a tube furnace at 800 °C under nitrogen atmosphere. MnO2 nanoparticles on typha tassel (CT) were synthesized with sol–gel method. The final product was denoted as MTT electrode (MnO2-CT). The carbonaceous material was characterized with infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and X-ray diffraction methods. Electrode usability performance of the material was examined via electrochemical techniques. An electrochemical method was developed with stripping voltammetry for the analysis of heavy metals such as Pb2+ and Cd2+ on the MCT electrode. The linear equations for Cd2+ and Pb2+ were computed. The limit of detection (S/N = 3) was 0.05 μg/L for Cd2+ and 0.01 μg/L for Pb2+ within the range of 0.5–50 μg/L and 0.2–50 μg/L, respectively. The method was successfully applied to the simultaneous determination of Cd2+ and Pb2+ in tap water and milk samples.

Keywords

Carbonaceous material MnO2 decorated typha tassel Electrode material Differential pulse anodic stripping voltammetry 

Notes

Supplementary material

11696_2019_839_MOESM1_ESM.docx (375 kb)
Supplementary material 1 (DOCX 375 kb)

References

  1. Angell CL, Lewis IC (1978) Raman spectroscopy of mesophase pitches. Carbon 16:431CrossRefGoogle Scholar
  2. Arof AK, Kufian MZ, Syukur MF, Aziz MF, Abdelrahman AE, Majid SR (2012) Electrochim Acta 74:39CrossRefGoogle Scholar
  3. Arun Raja L, Thirumoorthy P, Karthik A, Subramanian R, Rajendran V (2017) J Alloys Compd 706:470CrossRefGoogle Scholar
  4. Ashori E, Nazari F, Illas F (2014) Int J Hydrog Energy 39:6610CrossRefGoogle Scholar
  5. Chamjangali MA, Kouhestani H, Masdarolomoor F, Daneshinejad H (2015) Sens Actuators B Chem 216:384CrossRefGoogle Scholar
  6. Chen L, Su Z, He X, Liu Y, Qin C, Zhou Y, Li Z, Wang L, Xie Q, Yao S (2012) Electrochem Commun 15:34CrossRefGoogle Scholar
  7. Deng J, Chen L, Sun Y, Ma M, Fu L (2015) Carbon 92:177CrossRefGoogle Scholar
  8. Erkal A, Ustunda I, Yavuz S, Ustundağ Z (2015) J Electrochem Soc 162:H213CrossRefGoogle Scholar
  9. Erkal A, Aşık İ, Yavuz S, Kariper A, Üstündağ ZB (2016) J Electrochem Soc 163:H269CrossRefGoogle Scholar
  10. Geim AK (2009) Science 324:1530CrossRefGoogle Scholar
  11. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Chem Rev 115:4744CrossRefGoogle Scholar
  12. Guo Z, Li D-D, Luo X-K, Li Y-H, Zhao Q-N, Li M-M, Zhao Y-T, Sun T-S, Ma C (2017) J Colloid Interface Sci 490:11CrossRefGoogle Scholar
  13. Gutierrez-Segura E, Solache-Rios M, Colin-Cruz A (2009) J Hazard Mater 170:1227CrossRefGoogle Scholar
  14. Han G, Liu Y, Zhang L, Kan E, Zhang S, Tang J, Tang W (2014) Sci Rep 4:4824CrossRefGoogle Scholar
  15. Huang Y-J, Li W-S (2013) J Inorg Mater 28:341CrossRefGoogle Scholar
  16. Iijima S, Toshinari I (1993) Nature 363:603CrossRefGoogle Scholar
  17. Jena A, Munichandraiah N, Shivashankar SA (2013) J Power Sour 237:156CrossRefGoogle Scholar
  18. Jones DR, Jarrett JM, Tevis DS, Franklin M, Mullinix NJ, Wallon KL, Derrick Quarles C, Caldwell KL, Jones RL (2017) Talanta 162:114CrossRefGoogle Scholar
  19. Joseph D, Oberlin A (1983) Carbon 21:565CrossRefGoogle Scholar
  20. Keawkim K, Chuanuwatanakul S, Chailapakul O, Motomizu S (2013) Food Control 31:14CrossRefGoogle Scholar
  21. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Nature 458:872CrossRefGoogle Scholar
  22. Li X, Zhou H, Fu C, Wang F, Ding Y, Kuang Y (2016) Sens Actuators B Chem 236:144CrossRefGoogle Scholar
  23. Lin H, Li M, Mihailovič D (2015) Electrochim Acta 154:184CrossRefGoogle Scholar
  24. Liu X-J, Guo M-L, Yin X-Y, Huang J (2013) Mater Lett 106:30CrossRefGoogle Scholar
  25. Liu H, Li T, Wang X, Zhang W, Zhao T (2014) J Anal Appl Pyrolysis 110:442CrossRefGoogle Scholar
  26. Lv Y, Gan L, Liu M, Xiong W, Xu Z, Zhu D, Wright DS (2012) J Power Sour 209:152CrossRefGoogle Scholar
  27. Lv M, Wang X, Li J, Yang X, Zhang CA, Yang J, Hu H (2013) Electrochim Acta 108:412CrossRefGoogle Scholar
  28. Montilla F, Morallon E, Vazquez JL, Alcaniz-Monge J, Cazorla-Amoros D, Linares-Solano A (2002) Carbon 40:2193CrossRefGoogle Scholar
  29. Mysyk R, Gao Q, Raymundo-Piñero E, Béguin F (2012) Carbon 50:3367–3374CrossRefGoogle Scholar
  30. Naderi HR, Norouzi P, Ganjali MR (2016) Appl Surf Sci 366:552CrossRefGoogle Scholar
  31. Nie G, Lu X, Lei J, Wang C (2015) Electrochim Acta 180:1033CrossRefGoogle Scholar
  32. Qi L, Yan Z, Huo Y, Hai XM, Zhang ZQ (2016) Biosens Bioelectron 87:566CrossRefGoogle Scholar
  33. Ramirez-Castro C, Schütter C, Passerini S, Balducci A (2016) Electrochim Acta 206:452CrossRefGoogle Scholar
  34. Rutyna I, Korolczuk M (2014) Sens Actuators B Chem 204:136CrossRefGoogle Scholar
  35. Sarkar A, Kocaefe D, Kocaefe Y, Bhattacharyay D, Sarkar D, Morais B (2016) Energy Fuels 30:3549CrossRefGoogle Scholar
  36. Saxena M, Sarkar S (2012) Diam Relat Mater 24:11CrossRefGoogle Scholar
  37. Sharma S, Uttam KN (2017) Vib Spectrosc 92:135CrossRefGoogle Scholar
  38. Taner B, Özcan E, Üstündağ Z, Keskin S, Solak AO, Ekşi H (2010) Thin Solid Films 519:289CrossRefGoogle Scholar
  39. Üstündağ İ, Erkal A (2017) Sens Mater 29:85Google Scholar
  40. Üstündağ İ, Erkal A, Koralay T, Kadıoğlu YK, Jeon S (2016) J Anal Chem 71:685CrossRefGoogle Scholar
  41. Wang L-Y, Wang Y, Zhang H-X, Wang X-M (2015) New Carbon Mater 30:48CrossRefGoogle Scholar
  42. Wang B, Qiu J, Feng H, Wang N, Sakai ET (2016) Electrochim Acta 212:710CrossRefGoogle Scholar
  43. Wu M-B, Li R-C, He X-J, Zhang H-B, Sui W-B, Tan M-H (2015) New Carbon Mater 30:86CrossRefGoogle Scholar
  44. Xia H, Wang Y, Lin J, Lu L (2012) Nanoscale Res Lett 7:1CrossRefGoogle Scholar
  45. Xiao L, Xu H, Zhou S, Song T, Wang H, Li S, Gan W, Yuan Q (2014) Electrochim Acta 143:143CrossRefGoogle Scholar
  46. Yan W, Seifermann SM, Pierrat P, Brase S (2015) Org Biomol Chem 13:25CrossRefGoogle Scholar
  47. Yang S, Yang H, Ma H, Guo S, Cao F, Gong J, Deng Y (2011) Chem Commun (Camb) 47:2619CrossRefGoogle Scholar
  48. Yavuz S, Erkal A, Kariper İA, Solak AO, Jeon S, Mülazımoğlu İE, Üstündağ Z (2015) Food Anal Method 9:322CrossRefGoogle Scholar
  49. Zhai Y, Xu B, Zhu Y, Qing R, Peng C, Wang T, Li C, Zeng G (2016) Mater Sci Eng C 61:449CrossRefGoogle Scholar
  50. Zhao G, Yin Y, Wang H, Liu G, Wang Z (2016) Electrochim Acta 220:267CrossRefGoogle Scholar
  51. Zhong W-S, Ren T, Zhao L-J (2016) J Food Drug Anal 24:46CrossRefGoogle Scholar
  52. Zhu L, Xu L, Huang B, Jia N, Tan L, Yao S (2014) Electrochim Acta 115:471CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Mustafa Güleşen
    • 1
  • Aslı Erkal-Aytemur
    • 2
  • Samet Yavuz
    • 3
  • Abdullah Akbulut
    • 1
  • İ. Afşin Kariper
    • 4
    Email author
  • İlknur Üstündağ
    • 5
    Email author
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringDumlupınar UniversityKutahyaTurkey
  2. 2.Faculty of EngineeringAlanya Alaaddin Keykubat UniversityAntalyaTurkey
  3. 3.Department of Chemistry, Faculty of Arts and ScienceDumlupınar UniversityKutahyaTurkey
  4. 4.Department of Chemistry, Faculty of EducationErciyes UniversityKayseriTurkey
  5. 5.Department of Physics, Faculty of Arts and ScienceDumlupınar UniversityKutahyaTurkey

Personalised recommendations