Noncentrosymmetric organic crystals of barbiturates as potential nonlinear optical phores: experimental and theoretical analyses

  • Bojidarka IvanovaEmail author
  • Michael Spiteller
Original Paper


This paper details with design, synthesis, isolation, spectroscopic and structural elucidation of seven crystals of organic barbiturates (a red phase of bis(5-(hydroxyimino)pyrimidine-2,4,6(1H,3H,5H)-trione) 4H-1,2,4-triazol-4-amine co-crystal (1y), 2-methylamino-1-phenyl-propan-1-ol 2-thioxo-dihydro-pyrimidine-4,6-dione (2), 4-phenylpyridine thiobarbituric acid co-crystal (3), new monoclinic polymorph of violuric acid monohydrate (4), 2-pyrrolidin-1-yl-ethylammonium bis(violurate) dihydrate (5) and redetermination of barbituric acid dihydrate (6) and noncentrosymmetric orthorhombic violuric acid monohydrate (7)). The noncentrosymmetric crystals (1r) (2) and (7) can efficiently be employed in the field of nonlinear optical (NLO) materials research. We aim at studying relationship between molecular, respectively, crystal structure and NLO properties within a relatively large range of temperatures (T = 273–500 K). The single crystal X-ray diffraction, electronic absorption, conventional and linear polarized infrared spectroscopies have been used to provide experimental structural and spectroscopic data. The deuterated derivatives of (4) and (7) have been analysed, as well. The theoretical description of linear and NLO properties of crystals (1)–(7) is based on quantum chemical ab initio methods and density functional theory (DFT). The work contributes, importantly, to the fields of nonlinear optics, crystal engineering or materials research, reflecting in mind frequency conversion of lasers, electro-optics, modulators, waveguides and more.


Barbiturates NLO materials Crystallography Quantum chemistry Spectroscopy 



The authors thank the Deutscher Akademischer Austausch Dienst for a grant within the priority program “Stability Pact South-Eastern Europe” and for purchasing on Evolution 300 UV–VIS–NIR spectrometer; the Alexander von Humboldt-Stiftung (Germany) for instrumental equipment (single crystal X-ray diffractometer); the Deutsche Forschungsgemeinschaft; the central instrumental laboratories for structural analysis at Dortmund University (Federal State Nordrhein-Westfalen, Germany) and analytical and computational laboratory clusters at the Institute of Environmental Research at the same University. Conflict of interest: Michael Spiteller has received research grants (Deutsche Forschungsgemeinschaft, 255/21-1); Bojidarka Ivanova has received research grants (Deutsche Forschungsgemeinschaft; Alexander von Humboldt Foundation, research fellowship and instrumental equipment).

Supplementary material

11696_2019_835_MOESM1_ESM.doc (5 mb)
Crystallographic data of (1)(7) have been deposited to Cambridge Crystallographic Data Centre: CCDC 1581282 (1r) (Ia), 1581684 (1r) (Cc), 1576200 (2), 1581726 (3), 1581697 (4), 1581728 (5), 1581748 (6) and 1581761 (7), respectively. Copy of this information may be obtained from Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44 1223 336 033; e-mail: or; Crystallographic parameters, ORTEP plot, SEM image and photographs of crystals (Table S1, Figures S1); Theoretical NLO properties (Table S2); Orbital energies (Tabel S3). Experimental and theoretical IR spectra (Figures S2–S4); electronic absorption spectra (Figure S5); theoretical geometry parameters with respect to different stationary states of (1r) (Figure S6); self-assembly of violurate species in co-crystals (Scheme S1); Z–matrices(Table S4); theoretical vibrational analysis(Table S5). (DOC 5090 kb)


  1. Al-Karaghouli A, Abdul-Wahab B, Ajaj E, Al-Asaff S (1977a) A neutron diffraction study of barbituric acid dihydrate. Acta Cryst B 33:1655Google Scholar
  2. Al-Karaghouli A, Abdul-Wahab B, Ajaj E, Al-Asaff S (1977b) The crystal structure of barbituric acid dihydrate. Acta Cryst B 33:1655Google Scholar
  3. Alparone A (2013) Evolution of electric dipole (hyper)polarizabilities of β-strand polyglycine single chains: an ab initio and DFT theoretical study. J Phys Chem A 117:5184Google Scholar
  4. Atkins A, Gonzalez L (2017) Trajectory surface-hopping dynamics including intersystem crossing in [Ru(bpy)3]2+. J Phys Chem Lett 8:3840Google Scholar
  5. Badri Z, Bouzkova K, Foroutan-Nejad C, Marek R (2014) Origin of the thermodynamic stability of the polymorph IV of crystalline barbituric acid: evidence from solid-state NMR and electron density analyses. Cryst Growth Des 14:2763Google Scholar
  6. Barnes A, Le Gall L, Lauransan J (1979) Vibrational spectra of barbituric acid derivatives in low temperature matrices. Part 2 Barbituric acid and 1,3-dimethyl barbituric acid. J Mol Struct 56:15Google Scholar
  7. Bast R, Ruud K, Rizzo A, Helgaker T (2011) Relativistic four-component calculations of Buckingham birefringence using London atomic orbitals. Theor Chem Acc 129:685Google Scholar
  8. Blessing R (1995) An empirical correction for absorption anisotropy. Acta Crystallogr A51:33Google Scholar
  9. Bolton W (1963) The crystal structure of anhydrous barbituric acid. Acta Cryst 16:166–174Google Scholar
  10. Bonacin J, Formiga A, De Melo V, Toma H (2007) Vibrational spectra and theoretical studies of tautomerism and hydrogen bonding in the violuric acid and 6-amino-5-nitrosouracil system. Vibr Spectrosc 44:133Google Scholar
  11. Bosshard C, Hulliger J, Florsheimer J, Guenter P (2001) Organic nonlinear optical materials, advances in nonlinear optics. Gordon and Breach Science Publishers SA, PostfachGoogle Scholar
  12. Brittain H (2012) Cocrystal systems of pharmaceutical interest: 2011. Cryst Growth Des 12:5823Google Scholar
  13. Califano S (1976) Vibrational states. Wiley, Bristol, pp 1–335Google Scholar
  14. Califano S, Schettino V, Neto N (1981) Latice dynamics of molecular crystals. Springer, Berlin, pp 1–309Google Scholar
  15. Chase H, Rudshteyn B, Psciuk B, Upshur M, Strick B, Thomson R, Batista V, Geiger F (2016) Assessment of DFT for computing sum frequency generation spectra of an epoxydiol and a deuterated isotopologue at fused silica/vapor interfaces. J Phys Chem B 120:1919Google Scholar
  16. Chemla D, Zyss J (1987) Nonlinear optical properties of organic molecules and crystals. In: Chemla D, Zyss J (eds), vol 1. Academic Press, New York, pp 23–187Google Scholar
  17. Chierotti M, Gobetto R, Pellegrino L, Milone L, Venturello P (2008) Mechanically induced phase change in barbituric acid. Cryst Growth Des 8:1454Google Scholar
  18. Chierotti M, Ferrero L, Garino N, Gobetto R, Pellegrino L, Braga D, Grepioni F (2010) Maini, the richest collection of tautomeric polymorphs: the case of 2-thiobarbituric acid. Chem Eur J 16:4347Google Scholar
  19. Chierotti M, Gaglioti K, Gobetto R, Braga D, Grepioni F, Maini L (2013) From molecular crystals to salt co-crystals of barbituric acid via the carbonate ion and an improvement of the solid state properties. CrystEngComm 15:7598Google Scholar
  20. Clegg W, Nichol S, Patel A (2018) Cocrystals of barbituric acid with alkali metal halides. Croat Chem Acta 91:241Google Scholar
  21. Cooke G (2017) Synthesis and characterisation of push–pull flavin dyes with efficient second harmonic generation (SHG) properties. RSC Adv 7:24462Google Scholar
  22. Craven B, Mascarenhas Y (1964) The crystal structure of perdeuterated violuric acid monohydrate: the X-ray diffraction analysis. Acta Cryst 17:407Google Scholar
  23. Csaszar P, Pulay P (1984) Geometry optimization by direct inversion in the iterative subspace. J Mol Struct (Theochem) 114:31Google Scholar
  24. Dalton2011 Program Package (
  25. Elking D, Perera L, Duke R, Darden T, Pedersen L (2011) A finite field method for calculating molecular polarizability tensors for arbitrary multipole rank. J Comput Chem 32:3283Google Scholar
  26. Escartın J, Romaniello P, Stella L, Reinhard P, Suraud E (2013) On transition rates in surface hopping. arXiv:1301.2183v1 [physics.chem-ph]
  27. Fabiano E, Groenhof G, Thiel W (2008) Approximate switching algorithms for trajectory surface hopping. Chem Phys 351:111Google Scholar
  28. Frisch M et al (1998, 2009) Gaussian 09, 98. Gaussian, Inc., Pittsburgh, 2009, 1998Google Scholar
  29. GausView03 Program Package (2003) (
  30. Gentle I, Laver D, Ritchie G (1989) Second hyperpolarizability and static polarizability anisotropy of carbon dioxide. J Phys Chem 93:3035Google Scholar
  31. Gordon M, Schmidt M (2005) Advances in electronic structure theory: GAMESS a decade later. In: Dykstra C, Frenking G, Kim K, Scuseria G (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp 1167–1189Google Scholar
  32. Gryl M, Krawczuk A, Stadnicka K (2008) Polymorphism of urea–barbituric acid co-crystals. Acta Cryst B 64:623Google Scholar
  33. Gryl M, Krawczuk-Pantula A, Stadnicka K (2011) Charge-density analysis in polymorphs of urea–barbituric acid co-crystals. Acta Cryst B 67:144Google Scholar
  34. Gryl M, Koziel M, Stadnicka K, Matulkova I, Nemec I, Tesarova N, Nemec P (2013) Lidocaine barbiturate: a promising material for second harmonic generation. CrystEngComm 15:3275Google Scholar
  35. Guille K, Harrington R, Clegg W (2007) Violuric acid monohydrate: a second polymorph with more extensive hydrogen bonding. Acta Cryst C 63:o327Google Scholar
  36. Hohm U, Kerl K (1986) Temperature dependence of mean molecular polarizability of gas molecules. Mol Phys 58:541Google Scholar
  37. Hohm U, Kerl K (1987) Temperature dependence of measured mean molecular polarizability on account of translational motion. Mol Phys 61:1295Google Scholar
  38. Humeniuk A, Mitric R (2015) DFTBaby: a software package for non-adiabatic molecular dynamics simulations based on long-range corrected tight-binding TD-DFT(B). J Chem Phys 143:134120Google Scholar
  39. Ivanova B, Spiteller M (2010) Possible application of the organic barbiturates as NLO materials. Cryst Growth Des 10:2470Google Scholar
  40. Jeffrey G, Ghose S, Warwicher JO (1961) The crystal structure of barbituric acid dihydrate. Acta Cryst 14:881Google Scholar
  41. Kalugina Y, Cherepanov V (2015) Multipole electric moments and higher polarizabilities of molecules: methodology and some results of ab initio calculations. Atmos Ocean Opt 28:406Google Scholar
  42. Klein E, Lukes V (2006) Study of gas-phase O–H bond dissociation enthalpies and ionization potentials of substituted phenols—applicability of ab initio and DFT/B3LYP methods. Chem Phys 330:515Google Scholar
  43. Kolev T, Koleva B, Seidel R, Spiteller M, Sheldrick W (2009) New aspects on the origin of color in the solid state. Coherently shifting of the protons in violurate crystals. Cryst Growth Des 9:3348Google Scholar
  44. Kolev T, Spiteller M, Koleva B (2010) Spectroscopic and structural elucidation of amino acid derivatives and small peptides: experimental and theoretical tools. Amino Acids 38:45Google Scholar
  45. Kolev T, Velcheva E, Stamboliyska B (2017a) Computational and experimental studies of the IR spectra and structure on violuric acid and its anions. Bulg Chem Commun 49:239Google Scholar
  46. Kolev T, Velcheva E, Stamboliyska B (2017b) Computational and experimental studies of the IR spectra and structure on violuric acid and its anions. Bull Chem Commun 49:239Google Scholar
  47. Lewis T, Tocher D, Price P (2004) An experimental and theoretical search for polymorphs of barbituric acid: the challenges of even limited conformational flexibility. Cryst Growth Des 4:979Google Scholar
  48. Lewis T, Tocher D, Price S (2005) Investigating unused hydrogen bond acceptors using known and hypothetical crystal polymorphism. Cryst Growth Des 5:983Google Scholar
  49. Liebing P, Stein F, Hilfert L, Lorenz V, Oliynyk K, Edelmann F (2019) Synthesis and structural investigation of brightly colored organoammonium violurates. Z Anorg Allg Chem 645:36Google Scholar
  50. Loos P, Jacquemin D (2019) Chemically accurate 0-0 energies with not-so-accurate excited state geometries. J Chem Theory Comput 15:2481Google Scholar
  51. Luo Y, Vahtras O, Agren H (2013) Frequency-dependent polarizabilities and second hyperpolarizabilities of N2. Chem Phys Lett 205:555Google Scholar
  52. Maroulis G (1996) Electric polarizability and hyperpolarizability of carbon monoxide. J Phys Chem 100:13466Google Scholar
  53. Maroulis G (2003) Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2. J Chem Phys 118:2673 (16 pages) Google Scholar
  54. Maroulis G, Chambaud G (2018) Electric multipole moments of XeCuX (X = F, Cl, Br, I). Chem Phys Lett 693:194Google Scholar
  55. Marshall M, Lopez-Diaz V, Hudson B (2016) Single-crystal X-ray diffraction structure of the stable enol tautomer polymorph of barbituric acid at 224 and 95 K. Angew Chem Int Ed 55:1309Google Scholar
  56. Megariotis G, Avramopoulos A, Papadopoulos M, Reis GH (2012) Computer simulation of the nonlinear optical properties of Langmuir–Blodgett films of a squaraine derivative. J Phys Chem C 116:15449Google Scholar
  57. Migalska-Zalas A (2016) Theoretical study of the effect of π-conjugated transmitter of D–π–A ruthenium systems on the quadratic NLO properties. Opt Quantum Electron 48:183Google Scholar
  58. Mohammed N, Wiles A, Belsley M, Fernandes S, Cariello M, Rotello V, Raposo M, Lewis T, Tocher D, Price S (2005) Investigating unused hydrogen bond acceptors using known and hypothetical crystal polymorphism. Cryst Growth Des 5:983Google Scholar
  59. Momma K, Izumi F (2006) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272Google Scholar
  60. Momma K, Ikeda T, Belik A, Izumi F (2013) Dysnomia”, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern ftting. Powder Diffr 28:184Google Scholar
  61. Naik P, Planchat A, Pellegrin Y, Odobel F, Adhikaria A (2017) Exploring the application of new carbazole based dyes as effective p-type photosensitizers in dye-sensitized solar cells. Sol Energy 157:1064Google Scholar
  62. Naika P, Sub R, Elmorsy M, El-Shafei A, Adhikari A (2018) Investigation of new carbazole based metal-free dyes as active photosensitizers/co-sensitizers for DSSCs. Dyes Pigm 149:177Google Scholar
  63. Nalwa H, Watanabe T, Miyata S (1997) Nonlinear optics of organic molecules and polymers. In: Nalwa HS, Miyata S (eds). CRC Press: Boca Raton, pp 89–329Google Scholar
  64. Nayak P, Periasamy N (2009) Calculation of ionization potential of amorphous organic thin-films using solvation model and DFT. Org Electron 10:532Google Scholar
  65. Nelson R, Lide D, Maryott A (1967) Selected values of the electric dipole moments for molecules in the gas phase. In: National standard reference data series, vol 10. National Bureau of Standards, Washington, D.CGoogle Scholar
  66. Nichol C, Clegg W (2005a) A variable-temperature study of a phase transition in barbituric acid dihydrate. Acta Cryst B 61:464Google Scholar
  67. Nichol G, Clegg W (2005b) Violuric acid monohydrate: a definitive redetermination at 150 K. Acta Cryst E 61:o3788Google Scholar
  68. Nichol C, Clegg W (2009) Classical and weak hydrogen bonding interactions between 4,4′-bipyridine and organic acids: from co-crystal to organic complex. Cryst Growth Des 9:1844Google Scholar
  69. Parthiban S, Martin J (2001) Assessment of W1 and W2 theories on computation of electron affinities, ionization potentials, heats of formation, and proton affinities. J Chem Phys 114:6014Google Scholar
  70. Pechan T, Gwaltney S (2012) Calculations of relative intensities of fragment ions in the MSMS spectra of a doubly charged penta-peptide. BMC Bioinform 13:S13Google Scholar
  71. Petrushenko I, Ivanov N (2013) Ionization potentials and structural properties of finite-length single-walled carbon nanotubes: DFTstudy. Physica E 54:262Google Scholar
  72. Pinheiro M Jr, Caldas M, Rinke P, Blum V, Scheffler M (2015) Length dependence of ionization potentials of transacetylenes: internally consistent DFT/GW approach. Phys Rev B 92:195134Google Scholar
  73. Pluta P, Sadlej A (2001) Electric properties of urea and thiourea. J Chem Phys 114:136Google Scholar
  74. Pulay P (1982) Improved SCF convergence acceleration. J Comput Chem 3:556Google Scholar
  75. Reis H, Papadopoulos M, Avramopoulos A (2003) Calculation of the microscopic and macroscopic linear and nonlinear optical properties of acetonitrile: I. Accurate molecular properties in the gas phase and susceptibilities of the liquid in onsager’s reaction-field model. J Phys Chem A 107:3907Google Scholar
  76. Reis H, Papadopoulos M, Grzybowski A (2006) Computer simulation of the linear and nonlinear optical susceptibilities of p-nitroaniline in cyclohexane, 1,4-dioxane, and tetrahydrofuran in quadrupolar approximation II. Local field effects and optical susceptibilities. J Phys Chem B 110:18537Google Scholar
  77. Ritchie G, Watson J, Keir R (2003) Temperature dependence of electric field-gradient induced birefringence (Buckingham effect) and molecular quadrupole moment of N2. Comparison of experiment and theory. Chem Phys Lett 370:376Google Scholar
  78. Roos R, Lindh R, Malmqvist P, Veryazov V, Widmark P (2016) Multiconfigurational quantum chemistry. Wiley, Hoboken, pp 1–223Google Scholar
  79. Sakada K (2005) Optical properties of photonic crystals. Springer, BerlinGoogle Scholar
  80. Schleyer PVR, Schreiner P (Eds-in-Chief) (1998) In: Allinger N, Clark T, Gasteiger J, Kollman P, Schaefer III H (eds) Encyclopedia of computational chemistry. Wiley, vols 2 and 3, Wiley, West Sussex, pp 812–1520, 1521–2300Google Scholar
  81. Schmidt M, Bruening J, Glinnemann J, Huetzler M, Mcrschel M, Ivashevskaya S, Van de Streek J, Braga D, Maini L, Chierotti M, Gobetto R (2011) The thermodynamically stable form of solid barbituric acid: the enol tautomer. Angew Chem Int Ed 50:7924Google Scholar
  82. Schrader B (1995) Infrared and raman spectroscopy. VCH Publishers, New York, pp 1–787Google Scholar
  83. Schreiner P, Allen W, Orozco M, Thiel W, Willett P (2014) Computational molecular science, vols. 2 and 4. Wiley, West Sussex, 2014, pp 513–1257, 1631–2523Google Scholar
  84. Shaban B, Masoud M, Awad D, Mawlawi M, Sadek O (2014) Effect of Cd, Zn and Hg complexes of barbituric acid and thiouracil on rat brain monoamine oxidase-B (in vitro). Chem Biol Interact 208:37Google Scholar
  85. Shcherbin D, Thorvaldsen A, Ruud K, Coriani A, Rizzo A (2009) Analytic calculations of nonlinear mixed electric and magnetic frequency-dependent molecular properties using London atomic orbitals: Buckingham birefringence. Phys Chem Chem Phys 11:816Google Scholar
  86. Shedge S, Pal S, Koester A (2012) Theoretical study of frequency and temperature dependence of dipole-quadrupole polarizability of P4 and adamantane. Chem Phys Lett 552:146Google Scholar
  87. Sheldrick G (1990) Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr A 46:467Google Scholar
  88. Sheldrick G (2008) A short history of SHELX. Acta Crystallogr A 64:112Google Scholar
  89. Sheldrick G (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crysallogr D 66:479Google Scholar
  90. Shemchuk O, Braga D, Grepioni F (2016) Alloying barbituric and thiobarbituric acids: from solid solutions to a highly stable keto co-crystal form. Chem Commun 52:11815Google Scholar
  91. Shuai Z, Bredas J (1994) Magnetic dipole and electric quadrupole contributions to second-harmonic generation in C6—a valence effective hamiltonian study. Adv Mater 6:486Google Scholar
  92. Spek A (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7Google Scholar
  93. Stone A (2013) The theory of intermolecular forces. Oxford University Press, Oxford, pp 1–337Google Scholar
  94. Taborosi A, Szilagyi R, Zsirka B, Fonagy O, Horvath E, Kristof J (2018) Molecular treatment of nano-kaolinite generations. Inorg Chem 57:7151Google Scholar
  95. Tobbens D, Glinneman J, Chierotti M, Van de Streek J, Sheptyakov D (2012) On the high-temperature phase of barbituric acid. CrystEngComm 14:3046Google Scholar
  96. Truhlar D, Simple A (1991) Approximation for the vibrational partition function of a hindered internal rotation. J Comput Chem 12:266Google Scholar
  97. Vazquez X, Isborn C (2015) Size-dependent error of the density functional theory ionization potential in vacuum and solution. J Chem Phys 143:244105Google Scholar
  98. Wang L, Prezhdo O (2014) A simple solution to the trivial crossing problem in surface hopping. J Phys Chem Lett 5:713Google Scholar
  99. Yamaguchi G, Nobusada K (2016) Large hyperpolarizabilities of the second harmonic generation induced by nonuniform optical near fields. J Phys Chem C 120:23748Google Scholar
  100. Zhao Y, Truhlar D (2008a) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157Google Scholar
  101. Zhao Y, Truhlar D (2008b) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische BiologieUniversität DortmundDortmundGermany

Personalised recommendations