Advertisement

Synthesis of highly luminescent nanocomposite LaF3:Ln3+/Q-dots-CdTe system, exhibiting tunable red-to-green emission

  • Lenka Řezáčová
  • Marcin Runowski
  • Přemysl LubalEmail author
  • Andrzej Szyczewski
  • Stefan Lis
Original Paper
  • 7 Downloads

Abstract

Preparation of LaF3:Gd3+ 30%, Ce3+ 10%, Eu3+ 1% NPs conjugated with CdTe quantum dots was performed by two methods. The first method includes mixing of two products, while the second method is based on the co-precipitation approach. The mixing of individual components did not lead to the formation of a new product. On the contrary, the product obtained by co-precipitation synthesis resulted in particles having about 140 nm in diameter. This nanocomposite system exhibits tunable red (λexc = 248 nm) and green (λexc = 340 m) luminescence due to the presence of Eu3+ ion and CdTe quantum dots.

Keywords

Luminescence CdTe quantum dots Lanthanide-doped fluorides Energy transfer Nanocomposites 

Notes

Acknowledgements

Financial support from the Ministry of Education of the Czech Republic (grant MUNI/A/1359/2018 and CEITEC LQ 1601) and EU ERASMUS programs are acknowledged.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

11696_2019_816_MOESM1_ESM.docx (725 kb)
Supplementary material 1 (DOCX 725 kb)

References

  1. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 80(271):933–937.  https://doi.org/10.1126/science.271.5251.933 CrossRefGoogle Scholar
  2. Auzel F (2004) Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 104:139–173.  https://doi.org/10.1021/cr020357g CrossRefGoogle Scholar
  3. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374.  https://doi.org/10.1021/cr8003983 CrossRefGoogle Scholar
  4. Bünzli J-CG (2015) On the design of highly luminescent lanthanide complexes. Coord Chem Rev 293–294:19–47.  https://doi.org/10.1016/j.ccr.2014.10.013 CrossRefGoogle Scholar
  5. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV et al (1997) (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475.  https://doi.org/10.1021/jp971091y CrossRefGoogle Scholar
  6. Duan J, Song L, Zhan J (2009) One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res 2:61–68.  https://doi.org/10.1007/s12274-009-9004-0 CrossRefGoogle Scholar
  7. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137.  https://doi.org/10.1016/j.addr.2011.09.001 CrossRefGoogle Scholar
  8. Gagné F, Maysinger D, André C, Blaise C (2008) Cytotoxicity of aged cadmium-telluride quantum dots to rainbow trout hepatocytes. Nanotoxicology 2:113–120.  https://doi.org/10.1080/17435390802245708 CrossRefGoogle Scholar
  9. Grzyb T, Runowski M, Lis S (2014) Facile synthesis, structural and spectroscopic properties of GdF3:Ce3+, Ln3+ (Ln3+ = Sm3+, Eu3+, Tb3+, Dy3+) nanocrystals with bright multicolor luminescence. J Lumin 154:479–486.  https://doi.org/10.1016/j.jlumin.2014.05.020 CrossRefGoogle Scholar
  10. Guo Q, Liao L, Mei L, Liu H (2015) Color-tunable photoluminescence and energy transfer properties of single-phase Ba10(PO4)6O:Eu2+, Mn2+ phosphors. J Solid State Chem 232:102–107.  https://doi.org/10.1016/j.jssc.2015.09.007 CrossRefGoogle Scholar
  11. Hernández-Rodríguez MA, Afonso MM, Palenzuela JA et al (2018) Carbon dots as temperature nanosensors in the physiological range. J Lumin 196:313–315.  https://doi.org/10.1016/j.jlumin.2017.12.062 CrossRefGoogle Scholar
  12. Hölsä J (2009) Persistent luminescence beats the afterglow: 400 years of persistent luminescence. Electrochem Soc Interface 18:42–45Google Scholar
  13. Hossu M, Liu Z, Yao M et al (2012) X-ray luminescence of CdTe quantum dots in LaF3:Ce/CdTe nanocomposites. Appl Phys Lett 100:013109.  https://doi.org/10.1063/1.3674313 CrossRefGoogle Scholar
  14. Hsu S, Lin YY, Huang S et al (2013) Synthesis of water-dispersible zinc oxide quantum dots with antibacterial activity and low cytotoxicity for cell labeling. Nanotechnology 24:475102–475112.  https://doi.org/10.1088/0957-4484/24/47/475102 CrossRefGoogle Scholar
  15. Ju J, Won H, Jung J et al (2017) Enhanced X-ray excited luminescence of LaF3:Ce/CdSeS nanocomposites by resonance energy transfer for radiation detection. J Electron Mater 46:5319–5323.  https://doi.org/10.1007/s11664-017-5548-z CrossRefGoogle Scholar
  16. Kłonkowski AM, Lis S, Pietraszkiewicz M et al (2003) Luminescence properties of materials with Eu(III) complexes: role of ligand, coligand, anion, and matrix. Chem Mater 15:656–663.  https://doi.org/10.1021/cm0202557 CrossRefGoogle Scholar
  17. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113.  https://doi.org/10.1107/S0021889878012844 CrossRefGoogle Scholar
  18. Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20:6831–6847.  https://doi.org/10.1039/c0jm00031k CrossRefGoogle Scholar
  19. Ling X, Shi R, Zhang J et al (2018) Dual-signal luminescent detection of dopamine by a single type of lanthanide-doped nanoparticles. ACS Sens 3:1683–1689.  https://doi.org/10.1021/acssensors.8b00368 CrossRefGoogle Scholar
  20. Ma R, Bullock E, Maynard P et al (2011) Fingermark detection on non-porous and semi-porous surfaces using NaYF4:Er, Yb up-converter particles. Forensic Sci Int 207:145–149.  https://doi.org/10.1016/j.forsciint.2010.09.020 CrossRefGoogle Scholar
  21. Modlitbova P, Novotny K, Porizka P et al (2018) Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. Ecotoxicol Environ Saf 147:334–341.  https://doi.org/10.1016/j.ecoenv.2017.08.053 CrossRefGoogle Scholar
  22. Runowski M (2017) Color-tunable up-conversion emission of luminescent-plasmonic, core/shell nanomaterials—KY3F10:Yb3+, Tm3+/SiO2-NH2/Au. J Lumin 186:199–204.  https://doi.org/10.1016/j.jlumin.2017.02.032 CrossRefGoogle Scholar
  23. Runowski M, Lis S (2014) Preparation and photophysical properties of luminescent nanoparticles based on lanthanide doped fluorides (LaF3:Ce3+, Gd3+, Eu3+), obtained in the presence of different surfactants. J Alloy Compd 597:63–71.  https://doi.org/10.1016/j.jallcom.2014.01.209 CrossRefGoogle Scholar
  24. Runowski M, Lis S (2016) Synthesis of lanthanide doped CeF3:Gd3+, Sm3+ nanoparticles, exhibiting altered luminescence after hydrothermal post-treatment. J Alloy Compd 661:182–189.  https://doi.org/10.1016/j.jallcom.2015.11.182 CrossRefGoogle Scholar
  25. Runowski M, Goderski S, Paczesny J et al (2016) Preparation of biocompatible, luminescent-plasmonic core/shell nanomaterials based on lanthanide and gold nanoparticles exhibiting SERS effects. J Phys Chem C 120:23788–23798.  https://doi.org/10.1021/acs.jpcc.6b06644 CrossRefGoogle Scholar
  26. Runowski M, Marciniak J, Grzyb T et al (2017) Lifetime nanomanometry—high-pressure luminescence of up-converting lanthanide nanocrystals—SrF2:Yb3+ , Er3+. Nanoscale 9:16030–16037.  https://doi.org/10.1039/C7NR04353H CrossRefGoogle Scholar
  27. Runowski M, Shyichuk A, Tymiński A et al (2018a) Multifunctional optical sensors for nanomanometry and nanothermometry: high-pressure and high-temperature upconversion luminescence of lanthanide-doped phosphates—LaPO4/YPO4:Yb3+–Tm3+. ACS Appl Mater Interfaces 10:17269–17279.  https://doi.org/10.1021/acsami.8b02853 CrossRefGoogle Scholar
  28. Runowski M, Stopikowska N, Goderski S, Lis S (2018b) Luminescent-plasmonic, lanthanide-doped core/shell nanomaterials modified with Au nanorods—up-conversion luminescence tuning and morphology transformation after NIR laser irradiation. J Alloy Compd 762:621–630.  https://doi.org/10.1016/j.jallcom.2018.05.211 CrossRefGoogle Scholar
  29. Runowski M, Woźny P, Stopikowska N et al (2019) Optical pressure sensor based on the emission and excitation band width (FWHM) and luminescence shift of Ce3+ doped fluorapatite—high-pressure sensing. ACS Appl Mater Interfaces 11:4131–4138.  https://doi.org/10.1021/acsami.8b19500 CrossRefGoogle Scholar
  30. Škarková P, Novotný K, Lubal P et al (2017) 2D distribution mapping of quantum dots injected onto filtration paper by laser-induced breakdown spectroscopy. Spectrochim Acta Part B At Spectrosc 131:107–114.  https://doi.org/10.1016/J.SAB.2017.03.016 CrossRefGoogle Scholar
  31. Tang Y, Han S, Liu H et al (2013) The role of surface chemistry in determining in vivo biodistribution and toxicity of CdSe/ZnS core-shell quantum dots. Biomaterials 34:8741–8755.  https://doi.org/10.1016/j.biomaterials.2013.07.087 CrossRefGoogle Scholar
  32. Xing Y, Chaudry Q, Shen C et al (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2:1152–1165.  https://doi.org/10.1038/nprot.2007.107 CrossRefGoogle Scholar
  33. Yao M, Zhang X, Ma L et al (2010) Luminescence enhancement of CdTe nanostructures in LaF3:Ce/CdTe nanocomposites. J Appl Phys 108:103104.  https://doi.org/10.1063/1.3506416 CrossRefGoogle Scholar
  34. Ye H, He M, Zhou T et al (2018) A novel reddish-orange fluorapatite phosphor, La6-xBa4 (SiO4)6F2: x Sm3+—structure, luminescence and energy transfer properties. J Alloy Compd 757:79–86.  https://doi.org/10.1016/j.jallcom.2018.05.060 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Rare Earths, Faculty of ChemistryAdam Mickiewicz UniversityPoznanPoland
  3. 3.Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
  4. 4.Department of Medical Physics, Faculty of PhysicsAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations