Advertisement

APTES (3-aminopropyltriethoxy silane) functionalized MnFe2O4 nanoparticles: a potential material for magnetic fluid hyperthermia

  • P. R. Ghutepatil
  • A. B. Salunkhe
  • V. M. Khot
  • S. H. PawarEmail author
Original Paper
  • 11 Downloads

Abstract

Magnetic nanoparticles have the potential to be used for biomedical applications, specifically in painless curing of cancer. The primary objective of this article is to prepare 3-aminopropyltriethoxy silane (APTES) functionalized magnetic nanoparticles by using polyol synthesis method in order to use them for magnetic hyperthermia application. The obtained magnetic nanoparticles were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscopy, vibrating sample magnetometry, fourier transform infrared spectroscopy and thermogravimetric analysis techniques for structural, morphological and magnetic analysis. Structural analysis showed that the mean crystallite size of prepared nanoparticles was about 13 nm and magnetic study exhibited that the bare and functionalized nanoparticles were superparamagnetic at room temperature. Induction heating study was performed by applying external AC magnetic field of 167.6–335.2 Oe at a fixed frequency of 265 kHz to assess the feasibility for magnetic hyperthermia anticancer therapy. Maximum specific absorption rate 261.53 W g−1 has observed at 335.2 Oe (265 kHz) for APTES coated nanoparticles. Cell viability study revealed that APTES functionalized MnFe2O4 nanoparticles can be potential heating agent for cancer hyperthermia therapy as nanoparticles have almost no toxicity.

Graphical abstract

Keywords

MnFe2O4 nanoparticles Polyol synthesis APTES coating Hyperthermia 

Notes

Acknowledgements

The magnetic measurements were performed at UGC-DAE Consortium for Scientific Research, Indore. Authors are very much thankful to Dr. Alok Banergee, UGC-DAE, CSR Indore for VSM analysis.

Funding

No funding was received.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adio SO, Omar MH, Asif M, Saleh TA (2017) Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: a factorial design analysis. Process Saf Environ 107(518):527Google Scholar
  2. Adio SO, Asif M, Rashid AI, Baig N, Al-Arfaj AA, Saleh TA (2019) Poly (amidoxime) modified magnetic activated carbon for chromium and thallium adsorption: statistical analysis and regeneration. Process Saf Environ 121:254–262CrossRefGoogle Scholar
  3. Al-Shalalfeh MM, Saleh TA, Al-Saadi AA (2016) Silver colloid and film substrates in surface enhanced Raman scattering for 2-thiouracil detection. RSC Adv 6(79):75282–75292CrossRefGoogle Scholar
  4. Alswat AA, Ahmad MB, Saleh TA (2016) Zeolite modified with copper oxide and iron oxide for lead and arsenic adsorption from aqueous solutions. J Water Supply Res T 65(6):465–479CrossRefGoogle Scholar
  5. Barick KC, Aslam M, Prasad PV, Dravid VP, Bahadur D (2009) Nanoscale assembly of amine-functionalized colloidal iron oxide. J Magn Magn Mater 321:1529–1532CrossRefGoogle Scholar
  6. Batlle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D Appl Phys 35(6):R15–R42CrossRefGoogle Scholar
  7. Beji Z, Hanini A, Smiri LS, Gavard J, Kacem K, Villain F, Grenèche JM, Chau F, Ammar S (2010) Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells. Chem Mater 22:5420–5429CrossRefGoogle Scholar
  8. Bramhill J, Ross S, Ross G (2017) Bioactive nanocomposites for tissue repair and regeneration: a review. Int J Environ Res Public Health 14:66CrossRefGoogle Scholar
  9. Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305:366–370CrossRefGoogle Scholar
  10. Cao H, He J, Deng L, Gao X (2009) Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. Appl Surf Sci 255:7974–7980CrossRefGoogle Scholar
  11. Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y (2013) Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 10:2093–2110CrossRefGoogle Scholar
  12. Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davarana S (2013) Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf B 102:534–539CrossRefGoogle Scholar
  13. Feng B, Hong RY, Wang LS, Guo L, Li HZ, Ding J, Zheng Y, Wei DG (2008) Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids Surf A 328:52–59CrossRefGoogle Scholar
  14. Ghosh R, Pradhan L, Devi YP, Meena SS, Tewari R, Kumar A, Sharma S, Gajbhiye NS, Vatsa RK, Pandey BN, Ningthoujam RS (2011) Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 21:13388–13398CrossRefGoogle Scholar
  15. Guo P, Zhang G, Yu J, Li H, Zhao XS (2012) Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite. Colloids Surf A 395:168–174CrossRefGoogle Scholar
  16. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  17. Hachani R, Lowdell M, Birchall M, Hervault A, Mertz D, Begin-Colin S, Thanh NT (2016) Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8:3278–3287CrossRefGoogle Scholar
  18. Haruna K, Saleh TA, Thagfi JA, Saadi AA (2016) Structural properties, vibrational spectra and surface-enhanced Raman scattering of 2,4,6-trichloro- and tribromoanilines: a comparative study. J Mol Struct 1121:7–15CrossRefGoogle Scholar
  19. Hergt R, Dutz S, Zeisberger M (2009) Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnology 21:015706CrossRefGoogle Scholar
  20. Indira TK, Lakshmi PK (2010) Magnetic nanoparticles—a review. Int J Pharm Sci Nanotechnol 3:1035–1042Google Scholar
  21. Kim DK, Amin MS, Elborai S, Lee SH, Koseoglu Y, Zahn M, Muhammed M (2005) Energy absorption of superparamagnetic iron oxide nanoparticles by microwave irradiation. J Appl Phys 97:10510Google Scholar
  22. Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23CrossRefGoogle Scholar
  23. Mahmoudi M, Simchi A, Imani M, Häfeli U (2009) Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery. J Phys Chem C 113:8124–8131CrossRefGoogle Scholar
  24. Maity D, Kale SN, Kaul-Ghanekar R, Xue J, Ding J (2009) Studies of magnetite nanoparticles synthesized by thermal decomposition of iron(III) acetylacetonate in tri(ethylene glycol). J Magn Magn Mater 321:3093–3098CrossRefGoogle Scholar
  25. Mashhadizadeh MH, Amoli-Diva M (2010) Drug-carrying amino silane coated magnetic nanoparticles as potential vehicles for delivery of antibiotics. J Nanomed Nanotechol 3:139Google Scholar
  26. Muela A, Muñoz D, Martín-Rodríguez R, Orue I, Garaio E, Díaz de Cerio AA, Alonso J, García JA, Fdez-Gubieda ML (2016) Optimal parameters for hyperthermia treatment using biomineralized magnetite nanoparticles: theoretical and experimental approach. J Phys Chem C 120:24437–24448CrossRefGoogle Scholar
  27. Phadatare MR, Meshram JV, Gurav KV, Kim JH, Pawar SH (2016) Enhancement of specific absorption rate by exchange coupling of the core–shell structure of magnetic nanoparticles for magnetic hyperthermia. J Phys D 49:9CrossRefGoogle Scholar
  28. Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J Phys Chem C 116:25602–25610CrossRefGoogle Scholar
  29. Rittich B, Španová A, Horák D, Beneš MJ, Klesnilová L, Petrová K, Rybnikář A (2006) Isolation of microbial DNA by newly designed magnetic particles. Colloids Surf B 52:143–148CrossRefGoogle Scholar
  30. Sahoo B, Sahu SK, Nayak S, Dhara D, Pramanik P (2012) Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants. Catal Sci Technol 2:367–1374CrossRefGoogle Scholar
  31. Saleh TA, Al-Absi AA (2017) Kinetics, isotherms and thermodynamic evaluation of amine functionalized magnetic carbon for methyl red removal from aqueous solutions. J Mol Liq 248:577–585CrossRefGoogle Scholar
  32. Salunkhe AB, Khot VM, Pawar SH (2014) Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem 14:572–594CrossRefGoogle Scholar
  33. Smith EA, Chen W (2008) How to prevent the loss of surface functionality derived from aminosilanes. Langmuir 24:12405–12409CrossRefGoogle Scholar
  34. Waje SB, Hashim M, Yusoff WD, Abbas Z (2010) X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering. Appl Surf Sci 256:3122–3127CrossRefGoogle Scholar
  35. Xuan S, Wang F, Wang YJ, Yu JC, Leung KC (2010) Facile synthesis of size-controllable monodispersed ferrite nanospheres. J Mater Chem 20:5086–5094CrossRefGoogle Scholar
  36. Yamauraa M, Camilo RL, Sampaio LC, Macêdo MA, Nakamura M, Toma HE (2004) Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mater 279:210–217CrossRefGoogle Scholar
  37. Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu X, Yang S (2010) Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31:3667–3673CrossRefGoogle Scholar
  38. Zborowski M, Chalmers JJ, Lowrie WG (2017) Magnetic cell manipulation and sorting. In: Microsystems and nanosystems. Springer, Cham, pp 15–55Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  • P. R. Ghutepatil
    • 1
  • A. B. Salunkhe
    • 2
  • V. M. Khot
    • 3
  • S. H. Pawar
    • 1
    • 4
    Email author
  1. 1.Center for Interdisciplinary ResearchD. Y. Patil UniversityKolhapurIndia
  2. 2.Department of PhysicsElphinston CollegeMumbaiIndia
  3. 3.Dr. D.Y. Patil Institute of Engineering, Management and ResearchPuneIndia
  4. 4.Center for Innovative and Applied Research Anekant Education SocietyT.C. CollegeBaramatiIndia

Personalised recommendations