Advertisement

Synthesis of 1,2-propanediamine via reductive amination of isopropanolamine over Raney Ni under the promotion of K2CO3

  • Qin-Wei Yu
  • Ya-Ni Li
  • Qian Zhang
  • Wei-Qiang Wang
  • Su-Ning Mei
  • Feng Hui
  • Jian Shi
  • Feng-Wei Zhao
  • Jian-Ming YangEmail author
  • Jian LuEmail author
Original Paper
  • 18 Downloads

Abstract

Catalytic amination of isopropanolamine and ammonia to 1,2-propanediamine over Raney Ni with potassium carbonate as the additive was reported. Characterization of N2 adsorption–desorption and XRD were performed to reveal the textural and structural properties of the catalysts. With the additive of potassium carbonate, the selectivity of 1,2-propanediamine was improved, while the side generation of 2,5-dimethylpiperazine was suppressed. The catalytic reaction parameters were optimized and the yield of 1,2-propanediamine reached 80% under the optimized reaction condition.

Keywords

Isopropanolamine 1,2-Propanediamine Raney nickel Potassium carbonate Reductive amination 

Notes

Acknowledgements

We are grateful to be supported by the Key Research and Development Projects of Shanxi Province (Nos. 2017ZDXM-GY-070, 2017ZDXM-GY-042).

References

  1. Bahadori A, Nwaoha C, Clark MW (2013) Dictionary of oil, gas, and petrochemical processing. CRC, LondonGoogle Scholar
  2. Barnard NC, Brown SGR, Devred F, Bakker JW, Nieuwenhuys BE, Adkins NJ (2011) A quantitative investigation of the structure of Raney-Ni catalyst material using both computer simulation and experimental measurements. J Catal 281(2):300–308.  https://doi.org/10.1016/j.jcat.2011.05.010 Google Scholar
  3. Choi S, Drese JH, Eisenberger PM, Jones CW (2011) Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environ Sci Technol 45(6):2420–2427.  https://doi.org/10.1021/es102797w Google Scholar
  4. Crossley SWM, Obradors C, Martinez RM, Shenvi RA (2016) Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem Rev 116(15):8912–9000.  https://doi.org/10.1021/acs.chemrev.6b00334 Google Scholar
  5. Dellannay F, Damon JP, Masson J, Delmon B (1982) Quantitative xps analysis of the surface composition of raney nickel catalysts. Appl Catal 4(2):169–180.  https://doi.org/10.1016/0166-9834(82)80248-0 Google Scholar
  6. Du Y, Chen H, Chen R, Xu N (2006) Poisoning effect of some nitrogen compounds on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chem Eng J 125(1):9–14.  https://doi.org/10.1016/j.cej.2006.05.019 Google Scholar
  7. Fischer A, Maciejewski M, Burgi T, Mallat T, Baiker A (1999a) Cobalt-catalyzed amination of 1,3-propanediol: effects of catalyst promotion and use of supercritical ammonia as solvent and reactant. J Catal 183(2):373–383.  https://doi.org/10.1006/jcat.1999.2408 Google Scholar
  8. Fischer A, Mallat T, Baiker A (1999b) Synthesis of 1,4-diaminocyclohexane in supercritical ammonia. J Catal 182(2):289–291.  https://doi.org/10.1006/jcat.1999.2410 Google Scholar
  9. Fischer A, Mallat T, Baiker A (1999c) Nickel-catalyzed amination of 1,3-propanediols differently substituted at C2-position: influence of reactant structure on diamine production. J Mol Catal A Chem 149(1–2):197–204.  https://doi.org/10.1016/S1381-1169(99)00174-0 Google Scholar
  10. Fischer A, Mallat T, Baiker A (1999d) Continuous amination of propanediols in supercritical ammonia. Angew Chem Int Ed 38(3):351–354.  https://doi.org/10.1002/(SICI)1521-3773(19990201)38:3%3c351:AID-ANIE351%3e3.0.CO;2-0 Google Scholar
  11. Fouilloux P, Martin GA, Renouprez AJ, Moraweck B, Imelik B, Prettre M (1972) A study of the texture and structure of Raney nickel. J Catal 25(2):212–222.  https://doi.org/10.1016/0021-9517(72)90220-5 Google Scholar
  12. Freel J, Pieters WJM, Anderson RB (1969) The structure of Raney nickel: I. Pore structure. J Catal 14(3):247–256.  https://doi.org/10.1016/0021-9517(69)90432-1 Google Scholar
  13. Imm S, Baehn S, Zhang M, Neubert L, Neumann H, Klasovsky F, Pfeffer J, Haas T, Beller M (2011) Improved ruthenium-catalyzed amination of alcohols with ammonia: synthesis of diamines and amino esters. Angew Chem Int Ed 50:7599–7603, S7599/7591–S7599/7511.  https://doi.org/10.1002/chin.201201033
  14. Jenzer G, Mallat T, Baiker A (1999) Cobalt-catalyzed amination of 1,3-cyclohexanediol and 2,4-pentanediol in supercritical ammonia. Catal Lett 61(3):111–114.  https://doi.org/10.1023/A:1019045527193 Google Scholar
  15. Knoefel ND, Rothfuss H, Willenbacher J, Barner-Kowollik C, Roesky PW (2017) Platinum(II)-crosslinked single-chain nanoparticles: an approach towards recyclable homogeneous catalysts. Angew Chem Int Ed 56(18):4950–4954.  https://doi.org/10.1002/anie.201700718 Google Scholar
  16. Lafrance M, Roggen M, Carreira EM (2012) Direct, enantioselective iridium-catalyzed allylic amination of racemic allylic alcohols. Angew Chem Int Ed 51:3470–3473, S3470/3471–S3470/3431.  https://doi.org/10.1002/anie.201108287
  17. Langdon WK, Levis WW Jr, Jackson DR (1962) 2,5-Dimethylpiperazine synthesis from 1-amino-2-propanol. Ind Eng Chem 1(2):153–156Google Scholar
  18. Lawrence SA (2004) Amines: synthesis, properties and applications. Cambridge University, London.  https://doi.org/10.1021/ja041026j Google Scholar
  19. Legnani L, Bhawal BN, Morandi B (2017) Recent developments in the direct synthesis of unprotected primary amines. Synthesis 49(4):776–789.  https://doi.org/10.1055/s-0036-1588371 Google Scholar
  20. Lei H, Song Z, Tan D, Bao X, Mu X, Zong B, Min E (2001) Preparation of novel Raney-Ni catalysts and characterization by XRD, SEM and XPS. Appl Catal A Gen 214(1):69–76.  https://doi.org/10.1016/S0926-860X(01)00481-1 Google Scholar
  21. Li Y, Cheng H, Zhang C, Zhang B, Liu T, Wu Q, Su X, Lin W, Zhao F (2017) Reductive amination of 1,6-hexanediol with Ru/Al2O3 catalyst in supercritical ammonia. Sci China Chem 60(7):920–926.  https://doi.org/10.1007/s11426-017-9049-5 Google Scholar
  22. Liu Q, Zhang T, Liao Y, Cai C, Tan J, Wang T, Qiu S, He M, Ma L (2017a) Production of C5/C6 sugar alcohols by hydrolytic hydrogenation of raw lignocellulosic biomass over Zr based solid acids combined with Ru/C. ACS Sustain Chem Eng 5(7):5940–5950.  https://doi.org/10.1021/acssuschemeng.7b00702 Google Scholar
  23. Liu YX, Zhou K, Shu HM, Liu HY, Lou JT, Guo DC, Wei ZJ, Li XN (2017b) Switchable synthesis of furfurylamine and tetrahydrofurfurylamine from furfuryl alcohol over Raney Nickel. Catal Sci Technol 7(18):4129–4135Google Scholar
  24. Lu XH, Wei XL, Zhou D, Jiang HZ, Sun YW, Xia QH (2015) Synthesis, structure and catalytic activity of the supported Ni catalysts for highly efficient one-step hydrogenation of 1,5-dinitronaphthalene to 1,5-diaminodecahydronaphthalene. J Mol Catal A Chem 396(396):196–206.  https://doi.org/10.1016/j.molcata.2014.08.030 Google Scholar
  25. Ma L, Yan L, Lu AH, Ding YJ (2018) Effect of Re promoter on the structure and catalytic performance of Ni–Re/Al2O3 catalysts for the reductive amination of monoethanolamine. RSC Adv 8:8152–8163.  https://doi.org/10.1039/C7RA12891F Google Scholar
  26. Martinez-Asencio A, Ramon DJ, Yus M (2011) N-Alkylation of poor nucleophilic amines and derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper(II) acetate: scope and mechanistic considerations. Tetrahedron 67:3140–3149.  https://doi.org/10.1016/j.tet.2011.02.075 Google Scholar
  27. Mink G, Horváth L (1998) Hydrogenation of aniline to cyclohexylamine on NaOH-promoted or lanthana supported nickel. React Kinet Catal Lett 65(1):59–65.  https://doi.org/10.1007/BF02475316 Google Scholar
  28. Niemeier J, Engel RV, Rose M (2017) Is water a suitable solvent for the catalytic amination of alcohols? Green Chem 19(12):2839–2845.  https://doi.org/10.1039/C7GC00422B Google Scholar
  29. Okamoto Y, Nitta Y, Imanaka T, Teranishi S (1980) Surface state, catalytic activity and selectivity of nickel catalysts in hydrogenation reactions. Part 2: surface characterization of Raney nickel and Urushibara nickel catalysts by X-ray photoelectron spectroscopy. Jchemsocfaraday Trans 76:998–1007.  https://doi.org/10.1039/F19807600998 Google Scholar
  30. Pelckmans M, Renders T, Van de Vyver S, Sels BF (2017) Bio-based amines through sustainable heterogeneous catalysis. Green Chem 19:5303–5331.  https://doi.org/10.1039/C7GC02299A Google Scholar
  31. Pera-Titus M, Shi F (2014) Catalytic amination of biomass-based alcohols. Chemsuschem 7(3):720–722.  https://doi.org/10.1002/cssc.201301095 Google Scholar
  32. Pingen D, Diebolt O, Vogt D (2013) Direct amination of bio-alcohols using ammonia. ChemCatChem 5(10):2905–2912.  https://doi.org/10.1002/cctc.201300407 Google Scholar
  33. Robertson SD, Anderson RB (1971) The structure of Raney nickel: IV. X-ray diffraction studies. J Catal 23(2):286–294.  https://doi.org/10.1016/0021-9517(71)90051-0 Google Scholar
  34. Rossin A, Peruzzini M (2016) Ammonia–borane and amine–borane dehydrogenation mediated by complex metal hydrides. Chem Rev 116(15):8848–8872.  https://doi.org/10.1021/acs.chemrev.6b00043 Google Scholar
  35. Roundhill DM (1992) Transition metal and enzyme catalyzed reactions involving reactions with ammonia and amines. Chem Rev 92(1):1–27.  https://doi.org/10.1021/cr00009a001 Google Scholar
  36. Subramanian N, Adeyinka A, Spivey JJ (2014) Catalytic conversion of syngas to i-butanol-synthesis routes and catalyst developments: a review. Catalysis 26:161–178.  https://doi.org/10.1039/9781782620037-00161 Google Scholar
  37. Suslov SY, Kirilina AV, Sergeev IA, Zezyulya TV, Sokolova EA, Eremina EV, Timofeev NV (2017) Complex amine-based reagents. Therm Eng 64(3):237–241.  https://doi.org/10.1134/S0040601517030065 Google Scholar
  38. Takanashi T, Nakagawa Y, Tomishige K (2014) Amination of alcohols with ammonia in water over Rh & In catalyst. Chem Lett 43(6):822–824.  https://doi.org/10.1246/cl.140051 Google Scholar
  39. Wang W, Yu Q, Zhang Q, Mei S, Yuan J, Zhao F, Yang J, Lu J (2017) Reductive amination of 2-amino-2-methyl-1-propanol and ammonia to produce 2-methyl-1,2-propanediamine over Raney Nickel Catalyst. ChemistrySelect 2(28):8818–8823.  https://doi.org/10.1002/slct.201701219 Google Scholar
  40. Yang LC, Wang YN, Zhang Y, Zhao Y (2017) Acid-assisted Ru-catalyzed enantioselective amination of 1,2-diols through borrowing hydrogen. ACS Catal 7(1):93–97.  https://doi.org/10.1021/acscatal.6b02959 Google Scholar
  41. Yue H, Guo L, Liu X, Rueping M (2017) Nickel-catalyzed synthesis of primary aryl and heteroaryl amines via C–O bond cleavage. Org Lett 19(7):1788–1791.  https://doi.org/10.1021/acs.orglett.7b00556 Google Scholar
  42. Zhang Y, Bai G, Yan X, Li Y, Zeng T, Wang J, Wang H, Xing J, Luan D, Tang X, Chen L (2007) Amination of ethanolamine over cobalt modified H-ZSM-5 catalysts. Catal Commun 8:1102–1106.  https://doi.org/10.1016/j.catcom.2006.10.018 Google Scholar
  43. Zhao T, Guo B, Han L, Zhu N, Gao F, Li Q, Li L, Zhang J (2015) CO2 fixation into novel CO2 storage materials composed of 1,2-ethanediamine and ethylene glycol derivatives. ChemPhysChem 16(10):2106–2109.  https://doi.org/10.1002/cphc.201500206 Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  • Qin-Wei Yu
    • 1
  • Ya-Ni Li
    • 1
  • Qian Zhang
    • 1
  • Wei-Qiang Wang
    • 1
  • Su-Ning Mei
    • 1
  • Feng Hui
    • 1
  • Jian Shi
    • 1
  • Feng-Wei Zhao
    • 1
  • Jian-Ming Yang
    • 1
    Email author
  • Jian Lu
    • 1
    Email author
  1. 1.State Key Laboratory of Fluorine & Nitrogen ChemicalsXi’an Modern Chemistry Research InstituteXi’anChina

Personalised recommendations