Chemical Papers

, Volume 73, Issue 5, pp 1279–1286 | Cite as

Synthesis, characterization and antimicrobial activity of hybrid-structured Ag@CeO2 nanoparticles

  • Kunjie WangEmail author
  • Pengyuan Su
  • Hongxia Li
  • Yanping Wu
  • Deyi Zhang
  • Huixia Feng
  • Haiyan Fan
Original Paper


In the present work, a hybrid Ag@CeO2 nanostructure composite was synthesized via a facile oxidation redox coating approach. The characterization by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy indicates Ag nanoparticles (NPs) are firmly attached to the surface of the CeO2 nanoparticles, driven by the strong interfacial interaction between Ag NPs and CeO2. The antibacterial effects of the Ag@CeO2 hybrid nanocomposite against prokaryotic bacteria were tested using disk diffusion and turbidity method. The plausible mechanism was proposed for the inhibition of bacterial growth.


Ag@CeO2 nanocomposite Hybrid Antibacterial Mechanism 



This work was supported by Grant Natural Science Foundation of China (21867015), Universities research project of Gansu (2015A041), the Hongliu young teachers cultivate project of Lanzhou University of Technology (Q201211) and the Doctoral research star-funded projects of Lanzhou University of Technology.


  1. Adhyapak PV, Karandikar P, Vijayamohanan K, Athawale AA, Chandwadkar AJ (2004) Synthesis of silver nanowires inside mesoporous MCM-41 host. Mater Lett 58(7–8):1168–1171. CrossRefGoogle Scholar
  2. Allafchian AR, Jalali SAH, Amiri R, Shahabadi Sh (2016) Synthesis and characterization of the NiFe2O4@TEOS–TPS@Ag nanocomposite and investigation of its antibacterial activity. Appl Surf Sci. CrossRefGoogle Scholar
  3. Arancon RAD, Balu AM, Romero AA, Ojeda M, Gomez M, Blanco J, Domingo JL, Luque R (2017) Mechanochemically synthesized Ag-based nanohybrids with unprecedented low toxicity in biomedical applications. Environ Res 154:204–211. CrossRefPubMedGoogle Scholar
  4. Dupin JC, Gonbeau D, Levasseur A, Vinatier P, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324CrossRefGoogle Scholar
  5. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic Synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomed Nanotechnol Biol Med 6(1):103–109. CrossRefGoogle Scholar
  6. Goudarzi M, Mir N, Mousavi-kamazani M, Bagheri S (2016) Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Nature Publ Gr. CrossRefGoogle Scholar
  7. Hassanpour M, Salavati-Niasari M, Mousavi SA (2018) CeO2/ZnO ceramic nanocomposites, synthesized via microwave method and used for decolorization of dye. J Nanostruct 8(1):97–106. CrossRefGoogle Scholar
  8. Hernandez-Viezcas JA, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2016) Interactions between CeO2 nanoparticles and the desert plant mesquite: a spectroscopy approach. ACS Sustain Chem Eng 4(3):1187–1192. CrossRefGoogle Scholar
  9. Jastrzębska AM, Karcz J, Karwowska E, Olszyna A (2017) Biosorption properties of RGO/Al2O3 nanocomposite flakes modified with Ag, Au, and Pd for water purification. J Alloy Compd 724:869–878. CrossRefGoogle Scholar
  10. Karunakaran C, Gomathisankar P (2013) Solvothermal synthesis of CeO2–TiO2 nanocomposite for visible light photocatalytic detoxification of cyanide. ACS Sustain Chem Eng 1(12):1555–1563. CrossRefGoogle Scholar
  11. Khan MM, Ansari SA, Lee JH, Omaish Ansari M, Lee J, Cho MH (2014) Electrochemically active biofilm assisted synthesis of Ag@CeO2 nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes. J Colloid Interface Sci 431:255–263. CrossRefPubMedGoogle Scholar
  12. Li X, Wang X, Song S, Liu D, Zhang H (2012) Selectively deposited noble metal nanoparticles on Fe3O4/graphene composites: stable, recyclable, and magnetically separable catalysts. Chem Eur J 18(24):7601–7607. CrossRefPubMedGoogle Scholar
  13. Mao C, Xiang Y, Liu X, Cui Z, Yang X, Yeung KWK, Pan H, Wang X, Chu PK, Wu A (2017) Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures. ACS Nano 11(9):9010–9021. CrossRefGoogle Scholar
  14. Mitsudome T, Mikami Y, Matoba M, Mizugaki T, Jitsukawa K, Kaneda K (2012) Design of a silver-cerium dioxide core-shell nanocomposite catalyst for chemoselective reduction reactions. Angew Chem Int Ed 51(1):136–139. CrossRefGoogle Scholar
  15. Nagaraju G, Udayabhanu Shivaraj, Prashanth SA, Shastri M, Yathish KV, Anupama C, Rangappa D (2017) Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Mater Res Bull 94:54–63. CrossRefGoogle Scholar
  16. Panahi-kalamuei M, Alizadeh S, Mousavi-kamazani M, Salavati-niasari M (2014) Ac Ce P Te D Us Cr T. J Ind Eng Chem. CrossRefGoogle Scholar
  17. Panahi-kalamuei M, Alizadeh S, Mousavi-kamazani M (2015) Journal of industrial and engineering chemistry synthesis and characterization of CeO2 nanoparticles via hydrothermal route. J Ind Eng Chem 21(3):1301–1305. CrossRefGoogle Scholar
  18. Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B, Mortensen NP et al (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76(24):7981–7989. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Reza A, Seyed A, Hossein A, Amiri R (2017) Antibacterial activity of new magnetic Ag/TiO2 nanocomposite in silane sol–gel matrix. J Mater Sci Mater Electron 28(16):12312–12319. CrossRefGoogle Scholar
  20. Sacara AM, Cristea C, Muresan LM (2017) Electrochemical detection of Malachite Green using glassy carbon electrodes modified with CeO2 nanoparticles and Nafion. J Electroanal Chem 792:23–30. CrossRefGoogle Scholar
  21. Soltani M, Jamali-Sheini F, Yousefi R (2016) Effect of growth condition on structure and optical properties of hybrid Ag-CuO nanomaterials. Adv Powder Technol 27(5):2196–2203. CrossRefGoogle Scholar
  22. Thill A, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156. CrossRefPubMedGoogle Scholar
  23. Wang X, Jiang Z, Zheng B, Xie Z, Zheng L (2012) Synthesis and shape-dependent catalytic properties of CeO2 nanocubes and truncated octahedra. CrystEngComm 14(22):7579–7582. CrossRefGoogle Scholar
  24. Wang K, Wu Y, Li H, Li M, Guan F, Fan H (2014) A hybrid antioxidizing and antibacterial material based on Ag-La2O3 nanocomposites. J Inorg Biochem 141(1):36–42. CrossRefPubMedGoogle Scholar
  25. Wodka D, Bielaníska E, Socha RP, Elzbieciak-Wodka M, Gurgul J, Nowak P, Warszyníski P, Kumakiri I (2010) Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Appl Mater Interfaces 2(7):1945–1953. CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.College of Petrochemical TechnologyLanzhou University of TechnologyLanzhouChina
  2. 2.Chemistry Department, School of Science and TechnologyNazarbayev UniversityAstanaKazakhstan

Personalised recommendations