Advertisement

Influence of double-network interpenetration on ethanol dehydration performance of PVA-based pervaporation membranes

  • Asmaa Selim
  • Nóra Valentínyi
  • Peter Mizsey
Original Paper
  • 7 Downloads

Abstract

Thermal crosslinked double-network poly (vinyl alcohol) (PVA) is prepared by applying the sequential method. The obtained membrane is characterized by thermogravimetric analysis (TGA), scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy and contact angle analyses. It is concluded from FTIR analysis, contact angle measurements and measuring of swelling degree at different feed concentrations that the interpenetrating of the second network, that is the double network (DN), decreases the hydrophilicity of the membrane, while improving the thermal behavior and stability under high temperature. For the sake of the comparison of PVA and DN-PVAs selectivity, total permeation flux, individual fluxes and pervaporation separation index are evaluated for the dehydration of ethanol solution with a feed composition of 85/15 wt% ethanol/water solution at 40–60 °C. Furthermore, the effect of feed temperature on the permeation flux is expressed by the Arrhenius relationship. The performance of DN-PVAs membrane is appraised according to the change in feed concentration and operating temperature. The ethanol concentration in the feed is 75–95 wt% the DN-PVAs has flux values in the range of 41–414 g/m2 h and separation factor of 105–376 at the operating temperature 40–60 °C.

Keywords

Poly (vinyl alcohol) Dehydration Pervaporation Double-network 

Notes

Acknowledgement

This research was supported by the Hungarian Scientific Research Fund, OTKA, and Grant No. 112699. Miskolc project.

Compliance with ethical standards

Conflicts of interest

All authors confirm that no potential conflict of interest was reported.

References

  1. Abels C, Carstensen F, Wessling M (2013) Membrane processes in biorefinery applications. J Membr Sci 444:285–317CrossRefGoogle Scholar
  2. Baker WR, Wijmans JG, Huang Y (2010) Permeability, permeance and selectivity: a preferred way of reporting pervaporation performance data. J Membr Sci 348:346–352.  https://doi.org/10.1016/j.memsci.2009.11.022 CrossRefGoogle Scholar
  3. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282CrossRefGoogle Scholar
  4. Bolto B, Tran T, Hoang M, Xie Z (2009) Crosslinked poly(vinyl alcohol) membranes. Progress Polym Sci 24:969–981CrossRefGoogle Scholar
  5. Bolto B, Hoang M, Xie Z (2011) A review of membrane selection for the dehydration of aqueous ethanol by pervaporation. Chem Eng Process 50:227–235CrossRefGoogle Scholar
  6. Brüschke HEA, Wynn NP (2000) Pervaporation Membrane technology and research. Menlo Park, CA, USAGoogle Scholar
  7. Byron PR, Dalby RN (1987) Effects of heat treatment on the permeability of polyvinyl alcohol films to a hydrophilic solute. J Pharm Sci 76:65–76CrossRefPubMedGoogle Scholar
  8. Chapman PD, Oliveira T, Livingston AG, Li K (2008) Membranes for the dehydration of solvents by pervaporation. J Membr Sci 318:5–37CrossRefGoogle Scholar
  9. Chaudhari S, Kwon Y, Moon M, Shon M, Nam S, Park Y (2017) Poly(vinyl alcohol) and poly(vinylamine) blend membranes for isopropanol dehydration. J Appl Polym Sci.  https://doi.org/10.1002/app.45572 CrossRefGoogle Scholar
  10. Feng X, Huang RYM (1997) Liquid separation by membrane pervaporation. Ind Eng Chem Res 36:1048–1066CrossRefGoogle Scholar
  11. Figoli A, Santoro S, Galiano F, Basile A (2015) Pervaporation membranes: preparation, characterization, and application. In: Basile A, Figoli A, Khayet M (eds) Pervaporation, vapour permeation and membrane distillation principles and applications. Elseiver, AmsterdamGoogle Scholar
  12. Galya T, Sedlarík V, Kuritka I, Novotny´ R, Sedlaíková J, Sáha P (2008) Antibacterial Poly(vinyl Alcohol) film containing silver nanoparticles: preparation and characterization. J Appl Polym Sci 110:3178–3185.  https://doi.org/10.1002/app.28908 CrossRefGoogle Scholar
  13. Gohil JM, Bhattacharya A, Ray P (2006) Studies on the cross-linking of Poly(Vinyl Alcohol). J Polym Res 13:161–169CrossRefGoogle Scholar
  14. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRefGoogle Scholar
  15. González-Campos JB et al (2012) Molecular dynamics analysis of PVA-AgnP composites by dielectric spectroscopy. J Nanomater 2012:11.  https://doi.org/10.1155/2012/925750 CrossRefGoogle Scholar
  16. Hasimi A, Stavropoulou A, Papadokostaki KG, Sanopoulou M (2008) Transport of water in polyvinyl alcohol films: effect of thermal treatment and chemical crosslinking. Eur Polymer J 44:4098–4107CrossRefGoogle Scholar
  17. Hodge RM, Bastow TJ, Edward GH, Simon GP, Hill AJ (1996) Free volume and the mechanism of plasticization in water-swollen Poly(vinyl alcohol). Macromolecules 29:8137–8143.  https://doi.org/10.1021/ma951073j CrossRefGoogle Scholar
  18. Huang RYM, Yeom CK (1990) Pervaporation separation of aqueous mixtures using crosslinked poly(vinyl alcohol) (PVA). II. Permeation of ethanol-water mixtures. J Membr Sci 51:213–292CrossRefGoogle Scholar
  19. Hyder MN (2008) Preparation, characterization and performance of Poly(vinyl alcohol) based membranes for pervaporation dehydration of alcohols. University of WaterlooGoogle Scholar
  20. Jiang LY, Wang Y, Chung T-S, Qiao XY, Lai J-Y (2009) Polyimides membranes for pervaporation and biofuels separation. Prog Polym Sci 34:1135–1160CrossRefGoogle Scholar
  21. Katz MG, Wydeven T (1982) Selective permeability of PVA membranes. II. Heat-treated membranes. J Appl Polym Sci 27:79–87CrossRefGoogle Scholar
  22. Li B-B, Xu Z-L, Qusay FA, Li R (2006) Chitosan-poly (vinyl alcohol)/poly (acrylonitrile) (CS–PVA/PAN) composite pervaporation membranes for the separation of ethanol–water solutions. Desalination 193:171–181CrossRefGoogle Scholar
  23. Li Y, Verbiest T, Strobbe R, Vankelecom IFJ (2013) Improving the performance of pervaporation membranes via localized heating through incorporation of silver nanoparticles Journal of Materials Chemistry AGoogle Scholar
  24. Mallapragada SK, Peppas NA (1996) Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water. J Polym Sci Part B: Polym Phys 34:1339–1346CrossRefGoogle Scholar
  25. Mansur SH, Sadahira MC, Souza NA, Mansur APA (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548CrossRefGoogle Scholar
  26. Meng XJ, Liu QL, Zhu AM, Zhang QG (2010) Amino-functionalized poly(vinyl alcohol) membranes for enhanced water permselectivity. J Membr Sci 360:276–283CrossRefGoogle Scholar
  27. Noorjahan A, Choi P (2015) Effect of free volume redistribution on the diffusivity of water and benzene in poly(vinyl alcohol). Chem Eng Sci 121:258–267CrossRefGoogle Scholar
  28. Park J-S, Park J-W, Ruckenstein E (2001) On the viscoelastic properties of Poly(vinyl alcohol) and chemically crosslinked Poly(vinyl alcohol). J Appl Polym Sci 82:1816–1823CrossRefGoogle Scholar
  29. Praptowidodo VS (2005) Influence of swelling on water transport through PVA-based membrane. J Mol Struct 739:207–212CrossRefGoogle Scholar
  30. Premakshi HG, Sajjan AM, Kittur AA, Kariduraganavar MY (2015) Enhancement of pervaporation performance of composite membranes through in situ generation of silver nanoparticles in poly(vinyl alcohol) matrix. J Appl Polym Sci 132:1–11.  https://doi.org/10.1002/app.41248 CrossRefGoogle Scholar
  31. Ruckensien E, Liang L (1996) Pervaporation of ethanol-water through polyvinylalcohol–polyacrylamide interpenetrating polymer network membranes unsupported and supported on polyethersulfone ultrafiltration membranes: a comparison. J Membr Sci 110:99–107CrossRefGoogle Scholar
  32. Ruckenstein E, Liang L (1996) Poly(acrylic acid)-poly(vinyl alcohol) semi- and interpenetrating polymer network pervaporation membranes. J Appl Polym Sci 62:973–987CrossRefGoogle Scholar
  33. Schaetzel P, Vauclair C, Nguyen QT, Bouzerar R (2004) A simplified solution–diffusion theory in pervaporation: the total solvent volume fraction model. J Membr Sci 44:117–127.  https://doi.org/10.1016/j.memsci.2004.06.060 CrossRefGoogle Scholar
  34. Singha NR, Kar S, Ray S, Ray SK (2009) Separation of isopropyl alcohol-water mixtures by pervaporation using crosslink IPN membranes. Chem Eng Process 48:1020–1029CrossRefGoogle Scholar
  35. Ueda Y, Tanaka T, Iizuka A, Sakai Y, Kojima T, Satokawa S, Yamasaki A (2011) Membrane separation of ethanol from mixtures of gasoline and bioethanol with heat-treated PVA membranes. Ind Eng Chem Res 50:1023–1027CrossRefGoogle Scholar
  36. Valentínyi N, Cséfalvay E, Mizsey P (2013) Modelling of pervaporation: parameter estimation and model development. Chem Eng Res Des 91:174–183CrossRefGoogle Scholar
  37. Vane LM (2008) Separation technologies for recovery and dehydration of alcohols from fermentation broths Biofuels. Bioprod Bioref 2:553–588CrossRefGoogle Scholar
  38. Vodnik VV, Aponjic´ ZS, Dzˇunuzovic´ JV, Bogdanovic´ U, Mitric´ M, Nedeljkovic´ J (2013) Anisotropic silver nanoparticles as filler for the formation of hybrid nanocomposites. Mater Res Bull 48:52–57CrossRefGoogle Scholar
  39. Wijmans JG, Baker RW (1995) The solution-diffusion model: a review. J Membr Sci.  https://doi.org/10.1016/0376-7388(95)00102-i CrossRefGoogle Scholar
  40. Xia LL, Li CL, Wang Y (2016) In-situ crosslinked PVA/organosilica hybrid membranes for pervaporation separations. J Membr Sci 498:263–275CrossRefGoogle Scholar
  41. Xue-Hui L, Le-Fu W, Li-Qiu Z (1998) Preparation of PVA/PAN pervaporation composite membrane and their separation properties. J Nat Gas Chem 7:361–368Google Scholar
  42. Yeom CK, Huang RY (1992) Modelling of the pervaporation separation of ethanol-water mixtures through crosslinked poly (vinyl alcohol) membrane. J Membr Sci 67:39–55CrossRefGoogle Scholar
  43. Zhang H, Wang Y (2016) Poly(vinyl alcohol)/ZIF-8-NH 2 mixed matrix membranes for ethanol dehydration via pervaporation. AIChE J 62:1728–1739CrossRefGoogle Scholar
  44. Zhang Y, Ye L (2014) Structure and property of polyvinyl alcohol/precipitated silica composite hydrogels for microorganism immobilization. Compos B Eng 56:749–755CrossRefGoogle Scholar
  45. Zhang QG, Liu QL, Jiang ZY, Chen Y (2007) Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes. J Membr Sci 287:237–245CrossRefGoogle Scholar
  46. Zhang QG, Liu QL, Zhu AM, Xiong Y, Ren L (2009) Pervaporation performance of quaternized poly(vinyl alcohol)and its crosslinked membranes for the dehydration of ethanol. J Membr Sci 335:68–75CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Chemical and Environmental Process EngineeringBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Chemical Engineering DepartmentNational Research CentreGizaEgypt
  3. 3.Institute of ChemistryUniversity of MiskolcMiskolcHungary

Personalised recommendations