Advertisement

Photo-control of poly(N-[4-[(4-Nitrophenyl)azo]phenyl]acrylamide) brushes on graphene oxide coated silicon surface

  • Mehtap Evci
  • Tuncer Caykara
Original Paper
  • 20 Downloads

Abstract

Poly(N-[4-[(4-Nitrophenyl)azo]phenyl]acrylamide [poly(NPAPAA)] brushes were obtained via interface-mediated reversible addition–fragmentation chain transfer polymerization to design new photoresponsive surface on the graphene oxide coated silicon substrate. Switchable surface wettability was controlled successfully by these densely packed polymer brushes using light as the exterior stimulation. The relatively nonpolar trans azobenzene polymer brushes were converted to a polar cis form (with a larger dipole moment) utilizing light of the suitable wavelength. This conversion is reversible and can be switched back by employing visible light. Cistrans photo-induced isomerization provided a reversible contact angle change (~ 9o) with UV and visible light for the poly(NPAPAA) brushes under successive irradiation cycles. This study may be promised to control cell culture surface without leaving any residual in terms of alternative medicine.

Keywords

Photoresponsive polymer brushes Switchable surface wettability Interface-mediated RAFT polymerization 

References

  1. Bandara HMD, Burdette SC (2012) Photoisomerization in different classes of azobenzene. Chem Soc Rev 41(5):1809–1825CrossRefPubMedGoogle Scholar
  2. Basuki SW, Schneider V, Strunskus T, Elbahri M, Faupel F (2015) Light-controlled conductance switching in azobenzene-containing MWCNT-polymer nanocomposites. ACS Appl Mater Interfaces 7(21):11257–11262CrossRefPubMedGoogle Scholar
  3. Beija M, Martty JD, Destarac M (2011) RAFT/MADIX polymers for the preparation of polymer/inorganic nanohybrids. Progr Polym Sci 36:845–886CrossRefGoogle Scholar
  4. Boukherroub R, Wayner DDM (1999) Controlled functionalization and multistep chemical manipulation of covalently modified Si (111) Surfaces 1. J Am Chem Soc 121(49):11513–11515CrossRefGoogle Scholar
  5. Cheng Z, Wang T, Li X, Zhang Y, Yu H (2015) NIR−Vis−UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites. ACS Appl Mater Interfaces 7:27494–27501CrossRefPubMedGoogle Scholar
  6. Chunzhao L, Benicewicz BC (2005) Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition—fragmentation chain transfer polymerization. Macromolecules 38(14):5929–5936CrossRefGoogle Scholar
  7. Cicero RL, Linford MR, Chidsey CED (2000) Photoreactivity of unsaturated compounds with hydrogen-terminated silicon (111). Langmuir 16(13):5688–5695CrossRefGoogle Scholar
  8. Cimen D, Caykara T (2013) Preparation of oligo-N-isopropylacrylamide brushes with OH and COOH end-groups via surface-initiated NMP. J Appl Polym Scı 129(1):383–390CrossRefGoogle Scholar
  9. Cimen D, Kursun TT, Caykara T (2014) Synthesis and stability of BODIPY-based fluorescent polymer brushes at different pHs. J Polym Sci Part A Polym Chem 52:3586–3596Google Scholar
  10. Ding L, Li J, Wang C, Lin L (2015) Controlled synthesis of photosensitive graft copolymers with high azobenzene-chromophore loading densities in the main and side chains by combining ATRP and ADMET polymerization. React Funct Polym 91:85–92CrossRefGoogle Scholar
  11. Gallyamov MO, Tartsch B, Khokholov AR, Sheiko SS, Boerner HG, Matyjaszewski K (2004) Real-time scanning force microscopy of macromolecular conformational transitions. Macromol Rapid Commun 25(19):1703–1707CrossRefGoogle Scholar
  12. Halperin A, Tirrell M, Lodge TP (1992) Tethered chains in polymer microstructures. Adv Polym Sci 100:31–71CrossRefGoogle Scholar
  13. Hayashi S, Abe T, Higashi N, Niwa M, Kurihara K (2002) Polyelectrolyte brush layers studied by surface forces measurement: dependence on pH and salt concentrations and scaling. Langmuir 18(10):3932–3944CrossRefGoogle Scholar
  14. Hegab HM, Zou L (2015) Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J Membr Sci 484:95–106CrossRefGoogle Scholar
  15. Homaeigohar S, Elbahri M (2017) Graphene membranes for water desalination. NPG Asia Mater 9:e427CrossRefGoogle Scholar
  16. Khoukh S, Oda R, Labrot T, Perrin P, Tribet C (2007) Light-responsive hydrophobic association of azobenzene-modified poly (acrylic acid) with neutral surfactants. Langmuir 23(1):94–104CrossRefPubMedGoogle Scholar
  17. Kopyshev A, Galvin CJ, Genzer J, Lomadze N, Santer S (2016) Polymer brushes modified by photosensitive azobenzene containing polyamines. Polymer 98:421–428CrossRefGoogle Scholar
  18. Kursun TT, Cimen D, Caykara T (2014) Synthesis and stability of BODIPY-based fluorescent polymer brushes at different p H s. J Polym Sci Part A Polym Chem 52:3586–3596Google Scholar
  19. Kursun TT, Cimen D, Caykara T (2017) Glycopolymer brushes with specific protein recognition property. J Appl Polym Sci 134:45238CrossRefGoogle Scholar
  20. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105CrossRefPubMedGoogle Scholar
  21. Lina SC, Maa CCM, Hsiaoa ST, Wanga YS, Yanga CY, Liaoa WH, Li SM, Wanga JA, Chenga TY, Lina CW, Yang RB (2016) Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene. Appl Surf Sci 385:436–444CrossRefGoogle Scholar
  22. Liu Y, Yu DS, Zeng CZ, Miao C, Dai LM (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 26(9):6158–6160CrossRefPubMedGoogle Scholar
  23. Lomadze N, Kopyshev A, Rühe J, Santer S (2011) Light-induced chain scission in photosensitive polymer brushes. Macromolecules 44(18):7372–7377CrossRefGoogle Scholar
  24. Luzinov I, Julthongpiput D, Malz H, Pionteck J, Tsukruk VV (2000) Polystyrene layers grafted to epoxy-modified silicon surfaces. Macromolecules 33(3):1043–1048CrossRefGoogle Scholar
  25. Natansohn A, Xie S, Rochon P (1992) Azo polymers for reversible optical storage. 2. Poly [4′-[[2-(acryloyloxy) ethyl] ethylamino]-2-chloro-4-nitroazobenzene]. Macromolecules 25(20):5531–5532CrossRefGoogle Scholar
  26. Otsuki N, Fujioka N, Kawatsuki N, Ono H (2006) Photoinduced orientation and holographic recording in polyester films comprising azobenzene side-groups using 633 nm red light. Mol Cryst Liq Cryst 458(1):139–148CrossRefGoogle Scholar
  27. Pieroni O, Fissi A, Angelini N, Lenci F (2001) Photoresponsive polypeptides. Acc Chem Res 34(1):9–17CrossRefPubMedGoogle Scholar
  28. Rao KM, Rao KSVK, Ha CS (2016) Stimuli responsive poly(Vinyl Caprolactam) Gels for biomedical applications. Gels 2(1):6CrossRefGoogle Scholar
  29. Roghani-Mamaqani H, Haddadi-Asl V, Ghaderi-Ghahfarrokhi M, Sobhkhiz Z (2014) Reverse atom transfer radical polymerization of methyl methacrylate in the presence of Azo-functionalized carbon nanotubes: a grafting from approach. Colloid Polym Sci 292(11):2971–2981CrossRefGoogle Scholar
  30. Roghani-Mamaqani H, Haddadi-Asl V, Sobhkhiz Z, Ghaderi-Ghahfarrokhi M (2015) Grafting poly (methyl methacrylate) from azo-functionalized graphene nanolayers via reverse atom transfer radical polymerization. Colloid Polym Sci 293:735–750CrossRefGoogle Scholar
  31. Samanta S, Locklin J (2008) Formation of photochromic spiropyran polymer brushes via surface-initiated, ring-opening metathesis polymerization: reversible photocontrol of wetting behavior and solvent dependent morphology changes. Langmuir 24(17):9558–9565CrossRefPubMedGoogle Scholar
  32. Siewierski LM, Brittain WJ, Petrash S, Foster MD (1996) Photoresponsive monolayers containing in-chain azobenzene. Langmuir 12:5838–5844CrossRefGoogle Scholar
  33. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006a) Graphene-based composite materials. Nature 442(7100):282–286CrossRefPubMedGoogle Scholar
  34. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006b) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158CrossRefGoogle Scholar
  35. Steenackers M, Gigler AM, Zhang N, Deubel F, Seifert M, Hess LH, Yi Xuan Lim CH, Ping Loh K, Garrido JA, Jordan R, Stutzmann M, Sharp IDJ (2011) Polymer brushes on graphene. Am Chem Soc 133:10490–10498CrossRefGoogle Scholar
  36. Turan E, Caykara T (2010) Construction of hydroxyl-terminated poly (N-isopropylacrylamide) brushes on silicon wafer via surface-initiated atom transfer radical polymerization. J Polym Sci Part A Polym Chem 48(17):3880–3887CrossRefGoogle Scholar
  37. Uekusa T, Nagano S, Seki T (2007) Unique molecular orientation in a smectic liquid crystalline polymer film attained by surface-initiated graft polymerization. Langmuir 23:4642–4645CrossRefPubMedGoogle Scholar
  38. Uekusa T, Nagano S, Seki T (2009) Highly ordered in-plane photoalignment attained by the brush architecture of liquid crystalline azobenzene polymer. Macromolecules 42:312–318CrossRefGoogle Scholar
  39. Wang HL, Hao QL, Yang XJ, Lu LD, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11(6):1158–1161CrossRefGoogle Scholar
  40. Wayner DDM, Wolkow RA (2002) Organic modification of hydrogen terminated silicon surfaces 1. J Chem Soc Perkin Trans 2:23–34Google Scholar
  41. Xia Y, Yin X, Brurke NAD, Stoever HDH (2005) Thermal response of narrow-disperse poly (N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 38(14):5937–5943CrossRefGoogle Scholar
  42. Yildirim E, Cimen D, Zengin A, Caykara T (2016) Synthesis of poly (N-(2-hydroxypropyl) methacrylamide) brushes by interface-mediated RAFT polymerization. RSC Adv 6(51):45259–45264CrossRefGoogle Scholar
  43. Yu Y, Nakano M, Ikeda T (2003) Photomechanics: directed bending of a polymer film by light. Nature 425(6954):145CrossRefPubMedGoogle Scholar
  44. Zammarelli N, Luksin M, Raschke H, Hergenröder R, Weberskirch R (2013) “Grafting-from” polymerization of PMMA from stainless steel surfaces by a RAFT-mediated polymerization process. Langmuir 29(41):12834–12843CrossRefPubMedGoogle Scholar
  45. Zengin A, Karakose G, Caykara T (2013) Poly(2-(dimethylamino)ethyl methacrylate) brushes fabricated by surface-mediated RAFT polymerization and their response to pH. Eur Polym J 49(10):3350–3358CrossRefGoogle Scholar
  46. Zhang H, Ruehe J (2005) Swelling of poly (methacrylic acid) brushes: influence of monovalent salts in the environment. Macromolecules 38(11):4855–4860CrossRefGoogle Scholar
  47. Zhang Q, Zhang DM, Lu YL, Xu G, Yao Y, Li S, Liu QJ (2016) Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles. Biosens Bioelectron 77:963–970CrossRefPubMedGoogle Scholar
  48. Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25(5):677–710CrossRefGoogle Scholar
  49. Zhou D, Mastan E, Zhu S (2012) Termination of surface radicals and kinetic analysis of surface-initiated RAFT polymerization on flat surfaces. Macromol Theory Simul 21:602–614CrossRefGoogle Scholar
  50. Zhou L, Liu Q, Lv X, Gao L, Fang S, Yu H (2016) Photoinduced triple shape memory polyurethane enabled by doping with azobenzene and GO. J Mater Chem C 4:9993–9997CrossRefGoogle Scholar
  51. Zuoa Y, Xua J, Zhua X, Duana X, Lub L, Gaoa Y, Xinga H, Yanga T, Yea G, Yub Y (2016) Poly (3, 4-ethylenedioxythiophene) nanorods/graphene oxide nanocomposite as a new electrode material for the selective electrochemical detection of mercury (II). Synth Met 220:14–19CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceGazi UniversityAnkaraTurkey

Personalised recommendations