Chemical Papers

, Volume 73, Issue 4, pp 811–820 | Cite as

Kinetic analysis of arsenic and iron oxidation by Acidianus brierleyi for biogenic scorodite formation

  • Edgar N. Tec-Caamal
  • Refugio Rodríguez-Vázquez
  • Ricardo Aguilar-LópezEmail author
Original Paper


The contamination of arsenic from natural processes and anthropogenic activities represents a global concern; therefore, the study of arsenic transformation is an important research topic. This work proposes a simple phenomenological kinetic model that describes the removal of arsenic by means of the crystallisation of scorodite using an extremophile archaeon (Acidianus brierleyi), considering the chemical reaction network to propose the corresponding mass balances. To determine the satisfactory predictive capacitive of the kinetic model structure and the usefulness of the parametric identification, two additional experimental campaigns of the formation of bioscorodite performed in shaking flasks with initial As(III) concentrations of (mM): 4.3–13 and Fe(II) concentrations of (mM): 6–18 were tested. Furthermore, a parametric sensitivity analysis was performed to determine points of special importance related to analytical techniques, to improve the precision of the results that can be used for further in silico studies. Statistical results suggest that the proposed model showed an acceptable fit for all tested conditions.


Arsenic removal Bioscorodite Kinetic analysis Acidianus brierleyi Parametric sensitivity analysis 



We acknowledge the National Council of Science and Technology (CONACYT) for a postgraduate scholarship to E.N. Tec-Caamal.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Bang S, Johnson MD, Korfiatis GP, Meng X (2005) Chemical reactions between arsenic and zero-valent iron in water. Water Res 39:763–770. CrossRefGoogle Scholar
  2. Crickmore PJ (1989) Power law models as descriptors of the kinetics of complex systems: temperature effects. Can J Chem Eng 67:392–396. CrossRefGoogle Scholar
  3. Dastidar A, Wang YT (2012) Modeling arsenite oxidation by chemoautotrophic Thiomonas arsenivorans strain b6 in a packed-bed bioreactor. Sci Total Environ 432:113–121. CrossRefGoogle Scholar
  4. Debiec K, Krzysztoforski J, Uhrynowski W, Sklodowska A, Drewniak L (2017) Kinetics of arsenite oxidation by Sinorhizobium sp. M14 under changing environmental conditions. Int Biodeterior Biodegrad 119:476–485. CrossRefGoogle Scholar
  5. Dinkla IJT, Gonzalez-Contreras P, Gahan CS, Weijma J, Buisman CJN, Henssen MJC, Sandström Å (2013) Quantifying microorganisms during biooxidation of arsenite and bioleaching of zinc sulfide. Miner Eng 48:25–30. CrossRefGoogle Scholar
  6. Eljamal O, Sasaki K, Tsuruyama S, Hirajima T (2011a) Kinetic Model of arsenic sorption onto zero-valent iron (ZVI). Water Qual Expo Health 2:125–132. CrossRefGoogle Scholar
  7. Eljamal O, Sasaki K, Hirajima T (2011b) Numerical simulation for reactive solute transport of arsenic in permeable reactive barrier column including zero-valent iron. Appl Math Model 35:5198–5207. CrossRefGoogle Scholar
  8. Eljamal O, Sasaki K, Hirajima T (2013) Sorption Kinetic of Arsenate as Water Contaminant on Zero Valent Iron. J Water Resource Prot 5:563–567. CrossRefGoogle Scholar
  9. Filippou D, Demopoulos GP (1997) Arsenic immobilization by controlled scorodite precipitation. J Met 49:52–58. Google Scholar
  10. Fujita T, Taguchi R, Abumiya M, Matsumoto M, Shibata E, Nakamura T (2008) Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part I. Hydrometallurgy 90:92–102. CrossRefGoogle Scholar
  11. Gonzalez-Contreras P, Weijma J, Buisman CJN (2009) Arsenic immobilization by biological scorodite crystallization: effect of high ferric concentration and foreign seeds. Adv Mat Res 71–73:629–632. Google Scholar
  12. Gonzalez-Contreras P, Weijma J, Van der Weijden R, Buisman CJN (2010) Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal. Environ Sci Technol 44:675–680. CrossRefGoogle Scholar
  13. Gonzalez-Contreras P, Weijma J, Buisman CJN (2012a) Bioscorodite crystallization in an airlift reactor for arsenic removal. Cryst Growth Des 12:2699–2706. CrossRefGoogle Scholar
  14. Gonzalez-Contreras P, Weijma J, Buisman CJN (2012b) Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal. Water Res 46:5883–5892. CrossRefGoogle Scholar
  15. Henke K (2009) Arsenic: environmental chemistry, health threats and waste treatment. Wiley, New JerseyCrossRefGoogle Scholar
  16. Hug ST, Leupin O (2003) Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the fenton reaction. Environ Sci Technol 37:2734–2742. CrossRefGoogle Scholar
  17. Kim MJ, Nriagu J (2000) Oxidation of arsenite in groundwater using ozone and oxygen. Sci Total Environ 247:71–79. CrossRefGoogle Scholar
  18. Krause E, Ettel VA (1988) Solubility and stability of scorodite, FeAsO4 2H2O: new data and further discussion. Am Miner 73:850–854Google Scholar
  19. Kuan SN, Zaini U, Pierre LC (2004) Arsenic removal technologies for drinking water treatment. Rev Environ Sci Biotechnol 3:43–53. CrossRefGoogle Scholar
  20. Langmuir D, Mahoney J, Rowson J (2006) Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4 2H2O) and their application to arsenic behavior in buried mine tailings. Geochim Cosmochim Acta 70:2942–2956. CrossRefGoogle Scholar
  21. Le Berre JF, Gauvin R, Demopoulos GP (2008) A study of the crystallization kinetics of scorodite via the transformation of poorly crystalline ferric arsenate in weakly acidic solution. Coll Surf A 315:117–129CrossRefGoogle Scholar
  22. Leist M, Casey RJ, Caridi D (2000) The management of arsenic wastes: problems and prospects. J Hazard Mater 76:125–138. CrossRefGoogle Scholar
  23. Liu S (2013) Bioprocess engineering: kinetics, biosystems, sustainability, and reactor design. Elsevier, BostonGoogle Scholar
  24. Mayank R, Ranjan A, Moholkar VS (2013) Mathematical models of ABE fermentation: review and analysis. Crit Rev Biotechnol 33:419–447. CrossRefGoogle Scholar
  25. Millero FJ, Sotolongo S, Izaguirre M (1987) The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta 51:793–801. CrossRefGoogle Scholar
  26. More JJ (1978) The Levenberg–Marquardt algorithm: implementations and theory. In: Watson GA (ed) Numerical analysis. Lectures notes in Mathematics, vol 630. Springer, Berlin, pp 105–116Google Scholar
  27. Nicomel NR, Leus K, Folens K, Van Der Voort P, Du Laing G (2016) Technologies for arsenic removal from water: current status and future perspectives. Int J Environ Res Public Health 13:62. CrossRefGoogle Scholar
  28. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, BerlinGoogle Scholar
  29. Okibe N, Koga M, Morishita S, Tanaka M, Heguri S, Asano S, Sasaki K, Hirajima T (2014) Microbial formation of crystalline scorodite for treatment of As(III)-bearing copper refinery process solution using Acidianus brierleyi. Hydrometallurgy 143:34–41. CrossRefGoogle Scholar
  30. Pina PS, Oliveira VA, Cruz FLS, Leão VA (2010) Kinetics of ferrous iron oxidation by Sulfobacillus thermosulfidooxidans. Biochem Eng J 51:194–197. CrossRefGoogle Scholar
  31. Salzsauler KA, Sidenko NV, Sherriff BL (2005) Arsenic mobility in alteration products of sulfide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Appl Geochem 20:2303–2314. CrossRefGoogle Scholar
  32. Santana-Casiano JM, González-Dávila M, Millero FJ (2005) Oxidation of nanomolar levels of Fe(II) with oxygen in natural waters. Environ Sci Technol 39:2073–2079. CrossRefGoogle Scholar
  33. Slyemi D, Bonnefoy V (2012) How prokaryotes deal with arsenic. Environ Microbiol Rep 4:571–586. Google Scholar
  34. Sweere APJ, Giesselbach J, Barendse R, Krieger R, Honderd G, Luyben KCAM (1988) Modelling the dynamic behaviour of Saccharomyces cerevisiae and its application in control experiments. Appl Microbiol Biotechnol 28:116–127. CrossRefGoogle Scholar
  35. Tanaka M, Hirajima T, Sasaki K, Okibe N (2017) Optimization of bioscorodite crystallization for treatment of As(III)-bearing wastewaters. Solid State Phenom 262:555–558. CrossRefGoogle Scholar
  36. Tchounwou PB, Wilson B, Ishaque A (1999) Important considerations in the development of public health advisories for arsenic and arsenic-containing compounds in drinking water. Rev Environ Health 14:211–229. Google Scholar
  37. van Scherpenzeel DA, Boon M, Ras C, Hansford GS, Heijnen JJ (1998) Kinetics of ferrous iron oxidation by Leptospirillum bacteria in continuous cultures. Biotechnol Prog 14:425–433. CrossRefGoogle Scholar
  38. Vanlier J, Tiemann CA, Hilbers PAJ, van Riel NAW (2013) Parameter uncertainty in biochemical models described by ordinary differential equations. Math Biosci 246:305–314. CrossRefGoogle Scholar
  39. Velazquez-Sanchez HI, Montes-Horcasitas MC, Aguilar-López R (2014) Development of a phenomenological kinetic model for butanol production using Clostridium beijerinckii. Rev Mex Ing Quím 13:103–112Google Scholar
  40. Voegelin A, Hug SJ (2003) Catalyzed oxidation of arsenic(III) by hydrogen peroxide on the surface of ferrihydrite: an in situ ATR-FTIR study. Environ Sci Technol 37:972–978. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Edgar N. Tec-Caamal
    • 1
  • Refugio Rodríguez-Vázquez
    • 1
  • Ricardo Aguilar-López
    • 1
    Email author
  1. 1.Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations