Preparation of Ag/Zn2TiO4 and its antibacterial activity on enamel tile

  • Le H. T. Anh
  • Pham T. T. Phuong
  • Nguyen T. T. Van
  • Nguyen Tri
  • Nguyen V. Minh
  • Huynh K. P. HaEmail author
Original Paper


In this study, Ag/Zn2TiO4 powder with uniform size (< 50 nm) and a specific surface area of 16.16 m2 g−1 was synthesized by sol–gel method and coated on enamel tiles to investigate its antibacterial activity against Escherichia coli and Staphylococcus aureus. Results obtained from XRD patterns and the curve fitting of XPS spectra revealed that silver metal and its oxides are presented in the synthesized powder. The enamel tiles coated by Ag/Zn2TiO4 exhibited good antibacterial activity against both bacteria. Besides, the Ag/Zn2TiO4 coating improved the surface mechanical properties of the enamel tiles.


Ag/Zn2TiO4 Antibacterial materials Enamel tile E. coli S. aureus 


  1. Altan M, Yildirim H (2014) Comparison of antibacterial properties of nano TiO2 and ZnO particle filled polymers. Acta Phys Pol, A 125:645–647. CrossRefGoogle Scholar
  2. Anh LHT, Ha HKP (2017) Synthesis of nanosized powder ZnTiO3 by sol–gel method as an antibacterial material. Vietnam J Chem 55:248–253Google Scholar
  3. Anh LHT, Quynh LAB, Ha HKP (2017) Synthesis of Ag/ZnTiO3 and Ag/Zn2TiO4 by sol-gel method and their antibacterial properties. J Sci Technol Dev 19:24–29Google Scholar
  4. Atay HY (2017) Improving mechanical properties and antibacterial behaviors of ceramic tile junctions with glass spheres and nano-Ag particles. Inorg Nano Metal Chem 47:1304–1311. CrossRefGoogle Scholar
  5. Choi EY, Kim CK (2017) Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci Rep UK 7:4178. CrossRefGoogle Scholar
  6. Dong C, Shang D, Shi L, Sun J, Shen B, Zhuge F, Li R, Chen W (2011) Roles of silver oxide in the bipolar resistance switching devices with silver electrode. Appl Phys Lett 98:072107. CrossRefGoogle Scholar
  7. Dutta DP, Singh A, Tyagi A (2014) Ag doped and Ag dispersed nano ZnTiO3: improved photocatalytic organic pollutant degradation under solar irradiation and antibacterial activity. J Environ Chem Eng 2:2177–2187. CrossRefGoogle Scholar
  8. Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS (2001) XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17:2664–2669. CrossRefGoogle Scholar
  9. Fragalà ME, Cacciotti I, Aleeva Y, Nigro RL, Bianco A, Malandrino G, Spinella C, Pezzotti G, Gusmano G (2010) Core–shell Zn-doped TiO2–ZnO nanofibers fabricated via a combination of electrospinning and metal–organic chemical vapour deposition. Cryst Eng Comm 12:3858–3865. CrossRefGoogle Scholar
  10. Ghosh T, Das AB, Jena B, Pradhan C (2015) Antimicrobial effect of silver zinc oxide (Ag–ZnO) nanocomposite particles. Front Life Sci 8:47–54. CrossRefGoogle Scholar
  11. Girish KM, Prashantha SC, Nagabhushana H, Ravikumar CR, Nagaswarupa HP, Naik R, Premakumar HB, Umesh B (2018) Multi-functional Zn2TiO4:Sm3+ nanopowders: Excellent performance as electrochemical sensor and UV photocatalyst. J Sci. CrossRefGoogle Scholar
  12. Habib MA, Shahadat MT, Bahadur NM, Ismail IMI, Mahmood AJ (2013) Synthesis and characterization of ZnO–TiO2 nanocomposites and their application as photocatalysts. Int Nano Lett 3:5. CrossRefGoogle Scholar
  13. Hamad A, Li L, Liu Z, Zhong XL, Liu H, Wang T (2015) Generation of silver titania nanoparticles from an Ag–Ti alloy via picosecond laser ablation and their antibacterial activities. RSC Adv 5:72981–72994. CrossRefGoogle Scholar
  14. Hoflund GB, Hazos ZF, Salaita GN (2000) Surface characterization study of Ag, AgO, and Ag2O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Phys Rev B 62:11126–11133. CrossRefGoogle Scholar
  15. Jaeger D, Patscheider J (2012) A complete and self-consistent evaluation of XPS spectra of TiN. J Electron Spectrosc Relat Phenom 185:523–534. CrossRefGoogle Scholar
  16. Kaspar TC, Droubay T, Chambers SA, Bagus PS (2010) Spectroscopic Evidence for Ag(III) in Highly Oxidized Silver Films by X-ray Photoelectron Spectroscopy. J Phys Chem C 114:21562–21571. CrossRefGoogle Scholar
  17. Le AQ, Nguyen ND, Vu CT, Nguyen QH (2016) Preparation of polypropylene/silver nano-zeolite plastics and evaluation of antibacterial and mechanical properties. J Compos Mater 6:89–94. CrossRefGoogle Scholar
  18. Liang W, Church TL, Harris AT (2012a) Biogenic synthesis of photocatalytically active Ag/TiO2 and Au/TiO2 composites. Green Chem 14:968–975. CrossRefGoogle Scholar
  19. Liang Y-C, Hu C-Y, Liang Y-C (2012b) Crystallographic phase evolution of ternary Zn-Ti-O nanomaterials during high-temperature annealing of ZnO–TiO2 nanocomposites. Cryst Eng Comm 14:5579–5584. CrossRefGoogle Scholar
  20. Lin L, Yang Y, Men L, Wang X, He D, Chai Y, Zhao B, Ghoshroy S, Tang Q (2013) A highly efficient TiO2–ZnO n-p-n heterojunction nanorod photocatalyst. Nanoscale 5:588–593. CrossRefPubMedGoogle Scholar
  21. Lopera A, Velásquez A, Chavarriaga E, Ocampo S, Zaghete M, Graminha M, Garcia C (2017) Synthesis by combustion in solution of Zn2TiO4 + Ag for photocatalytic and photodynamic applications in the visible. J Phys: Conf Series 935:012013Google Scholar
  22. Matai I, Sachdev A, Dubey P, Kumar SU, Bhushan B, Gopinath P (2014) Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Coll Surf B 115:359–367. CrossRefGoogle Scholar
  23. Millard RL, Peterson RC, Hunter BK (1995) Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and Rietveld refinement of X-ray diffraction data. Am Mineral 80:885–896. CrossRefGoogle Scholar
  24. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CNIST (2012) X-ray photo-electron spectroscopy database, NIST standard reference database 20, version 4.1. google scholar, Gaithersburg, MDGoogle Scholar
  25. Nikam L, Patil R, Panmand R, Kadam S, Sivanandan K, Kale B (2013) Novel Ag@ Zn2TiO4 nanocomposite and its enhanced antibacterial activity. Adv Sci 5:688–692. CrossRefGoogle Scholar
  26. Nikam L, Panmand R, Kadam S, Naik S, Kale B (2015) Enhanced hydrogen production under a visible light source and dye degradation under natural sunlight using nanostructured doped zinc orthotitanates. New J Chem 39:3821–3834. CrossRefGoogle Scholar
  27. Pham TTP, Nguyen PHD, Vo TT, Luu CL, Nguyen HHP (2016) Preparation of NO-doped β-MoO3 and its methanol oxidation property. Mater Chem Phys 184:5–11. CrossRefGoogle Scholar
  28. Rajendra R, Balakumar C, Ahammed HAM, Jayakumar S, Vaideki K, Rajesh E (2010) Use of zinc oxide nano particles for production of antimicrobial textiles. Int J Eng Sci 2:202–208. CrossRefGoogle Scholar
  29. Rodríguez JL, Poznyak T, Valenzuela MA, Tiznado H, Chairez I (2013) Surface interactions and mechanistic studies of 2,4-dichlorophenoxyacetic acid degradation by catalytic ozonation in presence of Ni/TiO2. Chem Eng J 222:426–434. CrossRefGoogle Scholar
  30. Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol 305:85–95. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Santos LM, Machado WA, Franca MD, Borges KA, Paniago RM, Patrocinio AOT, Machado AEH (2015) Structural characterization of Ag-doped TiO2 with enhanced photocatalytic activity. RSC Adv 5:103752–103759. CrossRefGoogle Scholar
  32. Schön G, Tummavuori J, Lindström B, Enzell C (1973) ESCA studies of Ag, Ag2O and AgO. Acta Chem Scand 27:24. CrossRefGoogle Scholar
  33. Shah MSAS, Nag M, Kalagara T, Singh S, Manorama SV (2008) Silver on PEG-PU-TiO2 polymer nanocomposite films: an excellent system for antibacterial applications. Chem Mater 20:2455–2460. CrossRefGoogle Scholar
  34. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242. CrossRefGoogle Scholar
  35. Stoyanova A, Dimitriev Y, Shalaby A, Bachvarova-Nedelcheva A, Iordanova R, Sredkova M (2011) Antibacterial properties of ZnTiO3 prepared by sol–gel method. J Optoelectron Biomed Mater 3:24–29Google Scholar
  36. Teng W, Li X, Zhao Q, Chen G (2013) Fabrication of Ag/Ag3PO4/TiO2 heterostructure photoelectrodes for efficient decomposition of 2-chlorophenol under visible light irradiation. J Mater Chem A 1:9060–9068. CrossRefGoogle Scholar
  37. Tjeng LH, Meinders MBJ, van Elp J, Ghijsen J, Sawatzky GA, Johnson RL (1990) Electronic structure of Ag2O. Phys Rev B 41:3190–3199. CrossRefGoogle Scholar
  38. Wang C-T, Lin J-C (2008) Surface nature of nanoparticle zinc-titanium oxide aerogel catalysts. Appl Surf Sci 254:4500–4507. CrossRefGoogle Scholar
  39. Weaver JF, Hoflund GB (1994a) Surface characterization study of the thermal decomposition of Ag2O. Chem Mater 6:1693–1699. CrossRefGoogle Scholar
  40. Weaver JF, Hoflund GB (1994b) Surface characterization study of the thermal decomposition of AgO. J Phys Chem 98:8519–8524. CrossRefGoogle Scholar
  41. Wu X-T (2009) Controlled assembly and modification of inorganic systems, vol 133. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  42. Zvekić D, Srdić VV, Karaman MA, Matavulj MN (2011) Antimicrobial properties of ZnO nanoparticles incorporated in polyurethane varnish Process. Appl Ceram 5:41–45. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Le H. T. Anh
    • 1
  • Pham T. T. Phuong
    • 2
  • Nguyen T. T. Van
    • 2
  • Nguyen Tri
    • 2
  • Nguyen V. Minh
    • 3
  • Huynh K. P. Ha
    • 1
    Email author
  1. 1.University of Technology, VNU-HCMHo Chi Minh CityVietnam
  2. 2.Institute of Chemical Technology, VASTHo Chi Minh CityVietnam
  3. 3.Faculty of BiotechnologyHo Chi Minh City Open UniversityHo Chi Minh CityVietnam

Personalised recommendations