Chemical Papers

, Volume 73, Issue 4, pp 943–951 | Cite as

Ferrocene-functionalized gold nanoparticles: study of a simple synthesis method and their electrochemical behavior

  • Sana SabahatEmail author
  • Naveed Kausar Janjua
  • Zareen Akhter
  • Muhammad Umair Hassan
Original Paper


We report on a new synthesis protocol for functionalization of water-insoluble ferrocene derivative on gold nanoparticles (AuNPs) in aqueous media. 11-mercaptoundecylferrocene (HS-(CH2)11-ferrocene) (FcSH) was successfully conjugated on AuNPs in an aqueous phase with the help of different thiol-alkylated polyethyleneglycol (PEG) ligands. Cyclic voltammetry (CV) was carried out for a range of sets of ferrocene-functionalized Au nanoparticles (FcSH–AuNPs) which showed electrochemical (EC) adsorption due to dithiolated linkage/self-assembly of monolayers (SAMs) on gold electrode surface. Importantly, the redox activity, aqueous solubility and stability of FcSH–AuNPs were noticed to remain unchanged throughout the study.

Graphical abstract


Thiolated ferrocene Functionalized gold nanoparticles Thiolated polyethylene glycol Cyclic voltammtery Dithiol monolayer Redox activity 



The author is thankful to COMSATS University for financial support.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.


  1. Baca AJ, Zhou F, Wang J, Hu J, Li J, Wang J, Chikneyan ZS (2004) Attachment of ferrocene-capped gold nanoparticle/streptavidin conjugates onto electrode surfaces covered with biotinylated biomolecules for enhanced voltammetric analysis. Electroanalysis 16:73–80. CrossRefGoogle Scholar
  2. Bard AJ, Faulker RL (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  3. Berciaud S, Cognet L, Tamarat P, Lounis B (2005) Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Lett 5:515–518. CrossRefGoogle Scholar
  4. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun. Google Scholar
  5. Creager SE, Rowe KG (1994) Competitive self-assembly and electrochemistry of some ferrocenyl-n-alkanethiol derivatives on gold. J Electroanal Chem 370:203–211. CrossRefGoogle Scholar
  6. Creager SE, Rowe KG (1997) Solvent and double-layer effects on redox reactions in self-assembled monolayers of ferrocenyl—alkanethiolates on gold. J Electroanal Chem 420:291–299. CrossRefGoogle Scholar
  7. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. CrossRefGoogle Scholar
  8. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217. CrossRefGoogle Scholar
  9. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22. CrossRefGoogle Scholar
  10. Gagne RR, Koval CA, Lisensky GC (1980) Ferrocene as an internal standard for electrochemical measurements. Inorg Chem 19:2854–2855. CrossRefGoogle Scholar
  11. Haiss W, Thanh KTN, Aveyard J, Fernig GD (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79:4215–4221. CrossRefGoogle Scholar
  12. Hegde RN, Swamy BEK, Sherigara BS, Nandibewoor ST, (2008) Electro-oxidation of atenolol at a glassy carbon electrode. Int J Electrochem Sci 3, 302–314.
  13. Johnson MT, Kreft E, NDa DD, Neuse EW, van Rensburg CEJ (2003) The cytotoxic activity of macromolecular ferrocene conjugates against the Colo 320 DM human colon cancer line. J Inorg Organomet Polym 13:255–267. CrossRefGoogle Scholar
  14. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707. CrossRefGoogle Scholar
  15. Klatt LN, Blaedel WJ (1967) Quasi-reversible and irreversible charge transfer at the tubular electrode. Anal Chem 39:1065–1072. CrossRefGoogle Scholar
  16. Labande A, Astruc D (2000) Colloids as redox sensors: recognition of H2PO4 and HSO4 by amidoferrocenylalkylthiol–gold nanoparticles. Chem Commun 12:1007–1008. CrossRefGoogle Scholar
  17. Li D, Zhang Y, Jiang J, Li J (2003) Electroactive gold nanoparticles protected by 4-ferrocene thiophenol monolayer. J Colloid Interface Sci 264:109–113. CrossRefGoogle Scholar
  18. Liu L, Du J, Li S, Yuan B, Han H, Jing M, Xia N (2013) Amplified voltammetric detection of dopamine using ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosens Bioelectron 41:730–735. CrossRefGoogle Scholar
  19. Loweth JC, Caldwell BW, Peng X, Alivisatos PA, Schultz GP (1999) DNA-based assembly of gold nanocrystals. Angew Chem Int Ed 5:1808–1812.;2-C CrossRefGoogle Scholar
  20. Neghmouche SN, Khelef A, Lanez T (2009) Electrochemistry characterization of ferrocene/ferricenium redox couple at glassycarbon electrode. Rev Sci Fond App 1:23–30. Google Scholar
  21. Neuse EW (2005) Macromolecular ferrocene compounds as cancer drug models. J Inorg Organomet Polym Mater 15:3–32. CrossRefGoogle Scholar
  22. Ouyang C, Aoki KJ, Chen J, Nishiumi T, Bo Wang (2013) Determination of concentration of saturated ferrocene in aqueous solution. Rep Electrochem 3:17–23. Google Scholar
  23. Perone SP (1966) Evaluation of stationary electrode polarography and cyclic voltammetry for the study of rapid electrode processes. Anal Chem 38:1158–1163. CrossRefGoogle Scholar
  24. Reinmuth WH (1960) Inversible systems in stationary electrode polarography. Anal Chem 32:1891–1892. CrossRefGoogle Scholar
  25. Reinmuth WH (1961) Theory of stationary electrode polarography. Anal Chem 33:1793–1794. CrossRefGoogle Scholar
  26. Reinmuth WH, Balasubramanian K (1988) Effects of quasi-reversible charge transfer on chronocoulometric relaxations in linearly adsorbing systems. J Electroanal Chem 246:233–239. CrossRefGoogle Scholar
  27. Rogers IE, Silvester SD, Poole LD, Aldous L, Hardacre C, Compton RG (2008) Voltammetric characterization of the ferrocene|ferrocenium and cobaltocenium|cobaltocene redox couples in RTILs. J Phys Chem C 112:2729–2735. CrossRefGoogle Scholar
  28. Sabahat S, Janjua NK, Brust M, Akhter Z (2011) Electrochemical fabrication of self assembled monolayer using ferrocene-functionalized gold nanoparticles on glassy carbon electrode. Electrochimica Acta 56:7092–7096. CrossRefGoogle Scholar
  29. Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, van der Velden JWA (1981) Au55[P(C6H5)3]12CI6—ein Goldcluster ungewöhnlicher Größe. Chem Ber 114:3634–3642. CrossRefGoogle Scholar
  30. Tshikhudo TR, Wang Z, Brust M (2004) Biocompatible gold nanoparticles. Mater. Sci Technol 20:980–984. Google Scholar
  31. Turkevich J, Stevenson PC, Hiller J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. CrossRefGoogle Scholar
  32. Velasco JG (1997) Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanalysis 9:880–882. CrossRefGoogle Scholar
  33. Viana AS, Jones AH, Abrantes LM, Kalaji M, (2001) Redox induced orientational changes in a series of short chain ferrocenyl alkyl thiols self-assembled on gold (111) electrodes. J Electroanal Chem 500: 290–298. CrossRefGoogle Scholar
  34. Wang J (1948) Analytical electrochemistry, 3rd edn. Wiley-VCH, New York, pp 37–41Google Scholar
  35. Wang J, Li J, Baca AJ, Hu J, Zhou F, Yan W, Dai-Pang W (2003) Amplified voltammetric detection of dna hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75:3941–3945. CrossRefGoogle Scholar
  36. Woehrle HG, Hutchison JE, Ozkar S, Finke RG, (2006) Analysis of Nanoparticle Transmission Electron Microscopy Data Using a Public- Domain Image-Processing Program Image. Turk J Chem 30: 1–13. Scholar
  37. Yao N, Wang ZL (2005) Handbook of Microscopy for nanotechnology. Springer, New YorkCrossRefGoogle Scholar
  38. Ye S, Sato Y, Uosaki K (1997) Redox-induced orientation change of a self-assembled monolayer of 11-ferrocenyl-1-undecanethiol on a gold electrode studied by in situ FT-IRRAS. Langmuir 13:3157–3161. CrossRefGoogle Scholar
  39. Zhang X, Servos MR, Liu J (2012) Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. J Am Chem Soc 134:7266–7269. CrossRefGoogle Scholar
  40. Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331:251–262. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of ChemistryCOMSATS UniversityIslamabadPakistan
  2. 2.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  3. 3.School of EngineeringUniversity of BirminghamBirminghamUK

Personalised recommendations