Chemical Papers

, Volume 73, Issue 2, pp 525–534 | Cite as

Inclusion complexes of Melia azedarach L. seed oil/β-cyclodextrin polymer: preparation and characterization

  • Assia Benyacoub
  • Abdelhak Skender
  • Khalida Boutemak
  • Amel Hadj-Ziane-ZafourEmail author
Original Paper


The objective of the present study is the encapsulation of Melia azedarach L. seed oil by the β-cyclodextrin–epichlorohydrin polymer to protect it against external environmental factors and also to increase its solubility. The encapsulation of this oil was carried out by the lyophilization method. The chemical composition of the extracted oil revealed that the main components identified were: linoleic (62.38%), oleic (26.95%), palmitic (05.80%) and stearic (02.37%) acids. Characterization of the β-cyclodextrin–epichlorohydrin polymer determined by different analytical techniques: nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) showed that the β-cyclodextrin–epichlorohydrin polymer adopts inclusion complex formation with β-cyclodextrin, a high molecular weight and higher solubility. The encapsulation of the oil with this polymer was also characterized and showed that the capsules obtained had an average size of 232.133 ± 3.52 nm with a polydispersity index of 0.226 ± 0.010.


Melia azedarach L. seed oil β-cyclodextrin–epichlorohydrin polymer Encapsulation Freeze-drying method Characterization 


  1. Aoudia H, Ntalli N, Aissani N, Yahiaou-Zaidi R, Caboni P (2012) Nematotoxic phenolic compounds from Melia azedarach against Meloidogyne incognita. J Agric Food Chem 60:11675–11680. CrossRefGoogle Scholar
  2. Babaoglu HC, Bayrak A, Ozdemir N, Ozgun N (2017) Encapsulation of clove essential oil in hydroxypropyl beta-cyclodextrin for characterization, controlled release, and antioxidant activity. J Food Process Preserv 41:e13202. CrossRefGoogle Scholar
  3. Bachheti RK, Dwivedi H, Rana V, Rai I, Joshi A (2012) Characterization of fatty acids in Melia azedarach L. seed oil. Int J Curr Res Rev. 4:108–114Google Scholar
  4. Choi MJ, Soottitantawat A, Nuchuchua O, Min SG, Ruktanonchai U (2009) Physical and light oxidative properties of eugenol encapsulated by molecular inclusion and emulsion–diffusion method. Food Res Int 42:148–156. CrossRefGoogle Scholar
  5. Deveswaran R, Puppala SKH, Bharath S, Basavaraj BV, Madhavan V (2012) Development of a novel water soluble β-cyclodextrin epichlorohydrin polymer complex to improve aqueous solubility. J Chem Biol Phys Sci 2:325–330Google Scholar
  6. Devi N, Maji TK (2010) Genipin crosslinked microcapsules of gelatin A and j-carrageenan polyelectrolyte complex for encapsulation of Neem (Azadirachta indica A. Juss.) seed oil. Polym Bull 65:347–362. CrossRefGoogle Scholar
  7. Devi N, Maji TK (2011) Neem seed oil: encapsulation and controlled release—search for a greener alternative for pest control. In: Stoytcheva M (ed) Pesticides in the modern world—pesticides use and management. InTech, London. ISBN 978-953-307-459-7Google Scholar
  8. Dima C, Cotarlet M, Tiberius B, Bahrim G, Alexe P, Dima S (2014) Encapsulation of coriander essential oil in beta-cyclodextrin: antioxidant and antimicrobial properties evaluation. Rom Biotechnol Lett 19:9128–9140Google Scholar
  9. Galvão JG, Silva VF, Ferreira SG, França FRM, Santos DA, Freitas LS, Alves PB, Araújo AAS, Cavalcanti SCH, Nunes RS (2015) β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: an alternative to control Aedes aegypti larvae. Thermochim Acta 608:14–19. CrossRefGoogle Scholar
  10. Ghnaya AB, Hamrouni L, Hanana M (2013) Notes ethnobotanique et phytopharmacologique sur Melia azedarach L. Phytothérapie 11:284–288. CrossRefGoogle Scholar
  11. Gidwani B, Vyas A (2014) Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B Biointerfaces 114:130–137. CrossRefGoogle Scholar
  12. Guimaraes AG, Oliveira MA, Alves RDS, Menezes PDP, Serafini MR, Araujo AAS, Bezerra DP, Junior LJQ (2015) Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chem Biol Interact 227:69–76. CrossRefGoogle Scholar
  13. Hadjiakhoondi A, Vatandoost H, Khanavi M, Sadeghipour-Roodsari HR, Vosoughi M, Kazemi M, Abai MR (2006) Fatty acid composition and toxicity of Melia azedarach L. fruits against malaria vector Anopheles stephensi. Iran J Pharm Res 2:97–102Google Scholar
  14. Hill LE, Gomes C, Taylor TM (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol 51:86–93. CrossRefGoogle Scholar
  15. Ismaili SA, Harhar H, Gharby S, Bourazmi H, Tabvaoui M, Kitane S, Belghiti MAE, Charrouf Z (2016) Chemical composition of two non-conventional oils in Morocco: Melia azadirachta and Silybum marianum (L.). J Mater Environ Sci 7:2208–2213Google Scholar
  16. Karpkird T, Khunsakorn R, Noptheeranuphap C, Midpanon S (2018) Inclusion complexes and photostability of UV filters and curcumin with beta-cyclodextrin polymers: effect on cross-linkers. J Incl Phenom Macrocycl Chem 91:37–45. CrossRefGoogle Scholar
  17. Khan AV, Ahmed QU, Mir MR, Shukla I, AliKhan A (2011) Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains. Asian Pac Trop Biomed 1:452–455. CrossRefGoogle Scholar
  18. Khan MF, Rawat AK, Khatoon S, Hussain MK, Mishra A, Negi DS (2018) In vitro and in vivo Antidiabetic Effect of Extracts of Melia azedarach, Zanthoxylum alatum, and Tanacetum nubigenum. Integr Med Int. Google Scholar
  19. Kumazawa S, Kubota S, Yamamoto H, Okamura N, Sugiyamab Y, Kobayashia H, Nakanishi M, Ohta T (2013) Antiangiogenic activity of flavonoids from Melia azedarach. Nat Prod Commun 8:1719–1720Google Scholar
  20. Liu H, Yang G, Tang Y, Di Cao, Qi T, Qi Y, Fan G (2013) Physicochemical characterization and pharmacokinetics evaluation of β-caryophyllene/β-cyclodextrin inclusion complex. Int J Pharm 450:304–310. CrossRefGoogle Scholar
  21. M’rabet Y, Rokbeni N, Cluzet S, Boulila A, Richard T, Krisa S, Marzouki L, Casabianca H, Hosni K (2017) Profiling of phenolic compounds and antioxidant activity of Melia azedarach L. leaves and fruits at two stages of maturity. Ind Crops Prod 107:232–243. CrossRefGoogle Scholar
  22. Maciel MV, Morais SM, Bevilaqua CM, Camurca-Vasconcelos AL, Costa CT, Castro CM (2006) Ovicidal and larvicidal activity of Melia azedarach extracts on Haemonchus contortus. Vet Parasitol 140:98–104. CrossRefGoogle Scholar
  23. Marques HMC (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25:313–326. CrossRefGoogle Scholar
  24. Nie S, Zhang S, Pan W, Liu Y (2011) In vitro and in vivo studies on the complexes of glipizide with water-soluble β-cyclodextrin-epichlorohydrin polymers. Drug Dev Ind Pharm 37:606–612. CrossRefGoogle Scholar
  25. Orthan IE, Guner E, Ozturk N, Senol FS, Erdem SA, Kartl M, Sener B (2012) Enzyme inhibitory and antioxidant activity of Melia azedarach L. naturalized in Anatolia and its phenolic acid and fatty acid composition. Ind Crops Prod 37:213–218. CrossRefGoogle Scholar
  26. Phunpee S, Ruktanonchai UR, Yoshii H, Assabumrungrat S, Soottitantawat A (2017) Encapsulation of lemongrass oil with cyclodextrins by spray drying and its controlled release characteristics. Biosci Biotechnol Biochem 81:718–723. CrossRefGoogle Scholar
  27. Poornima KN, Deveswaran R, Bharath S, Basavaraj BV, Madhavan V (2015) Synthesis and evaluation of β-cyclodextrin epichlorohydrin inclusion complex as a pharmaceutical excipient. J Fundam Appl Sci 7:203–221. CrossRefGoogle Scholar
  28. Rakmai J, Cheirsilp B, Mejuto JC, Torrado-Agrasar A, Simal-Gandara J (2017) Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-betacyclodextrin. Food Hydrocoll 65:157–164. CrossRefGoogle Scholar
  29. Renard E, Barnathan G, Deratani A, Sebille B (1996) Characterization and structure of cyclodextrin-epichlorohydrin polymers-effects of synthesis parameters. Proc Eighth Int Symp Cyclodext. Google Scholar
  30. Renard E, Barnathan G, Deratani A, Sebille B (1997a) Polycondensation of cyclodextrins with epichlorohydrin. Influence of reaction conditions on the polymer structure. Macromol Symp 122:229–234. CrossRefGoogle Scholar
  31. Renard E, Deratani A, Volet G, Sébille B (1997b) Preparation and characterization of water soluble high molecular beta-cyclodextrin-epichlorohydrin polymers. Eur Polym J 33:49–57. CrossRefGoogle Scholar
  32. Santos EH, Kamimura JA, Hill LE, Gomes CL (2015) Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT Food Sci Technol 60:583–592. CrossRefGoogle Scholar
  33. Wang X, Luo Z, Xiao Z (2014) Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex. Carbohydr Polym 101:1027–1032. CrossRefGoogle Scholar
  34. Wang D, Jia M, Wang L, Song S, Feng J, Zhang X (2017) Chitosan and β-cyclodextrin-epichlorohydrin polymer composite film as a plant healthcare material for carbendazim-controlled release to protect rape against Sclerotinia sclerotiorum (Lib.) de Bary. Materials 10:343. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Assia Benyacoub
    • 1
  • Abdelhak Skender
    • 1
    • 2
  • Khalida Boutemak
    • 3
  • Amel Hadj-Ziane-Zafour
    • 1
    Email author
  1. 1.Laboratoire de Génie ChimiqueUniversité de Blida 1BlidaAlgeria
  2. 2.Laboratoire Matériaux et EnvironnementUniversité Yahia FarésMédéaAlgeria
  3. 3.Laboratoire d’analyse fonctionnelle des Procédés ChimiquesUniversité de Blida 1BlidaAlgeria

Personalised recommendations