Chemical Papers

, Volume 73, Issue 2, pp 397–414 | Cite as

Hydrogenation of 4-chloronitrobenzenes over palladium and platinum catalysts supported on beta zeolite and γ-alumina

  • Milan KrálikEmail author
  • Dana Gašparovičová
  • Mária Turáková
  • Zuzana Vallušová
  • Jozef Balko
  • Peter Major
  • Milan Kučera
  • Pavel Puliš
  • Ondrej Milkovič
Original Paper


Liquid-phase hydrogenation of 4-chloronitrobenzene (4-CNB) to 4-chloroaniline (4-CAN) under mild reaction conditions (0.6 MPa, 25 °C, methanol-diethyl ether, 1:1 vol.) over palladium and platinum catalysts containing 1 mass% of metal supported on beta zeolite (M/B) or γ-alumina (M/A) was studied. The catalysts were prepared by the incipient wetness method using amino nitrate complexes and hydrogen as the reducing agent. SEM, adsorption–desorption nitrogen isotherms, XRD, TEM, and hydrogen chemisorption techniques were used for their characterization. The techniques employed revealed the presence of relatively large metal particles (approximately 15 nm; about 3% of metal dispersion). Stability of the catalysts during the hydrogenation was high; no catalyst changes were observed after two recycle runs. Hydrogenation over M/A catalysts was found to be faster than that over M/B catalysts in the methanol–diethyl ether mixture. Selectivity of only about 75% to 4-CAN was achieved over the M/A catalyst in methanol. Positive effect of the acid support (beta zeolite) and low polarity of the reaction environment (diethyl ether) are reflected in the high selectivity to 4-CAN; of about 99% at virtually 100% conversion of 4-CNB.


Hydrogenation Liquid phase Chloronitrobenzenes Hydrodechlorination Palladium catalysts Platinum catalysts Solvent effect 



Activated carbon


Al-pillared clay




Amino poly[styrene-co-maleic anhydride]




Brunauer, Emmet, and Teller










Carbon nitride




Carbon nanotubes




Diethyl ether








Ethylene glycol


Ethyl acetate




Fourier-transform infrared spectroscopy


Graphite oxide






High-performance liquid chromatography


1 mass% of metal supported on γ-alumina


1 mass% of metal supported on beta zeolite




Mesoporous carbon


Mesoporous silica










Nuclear magnetic resonance




Number of repetitions with the same catalyst


Selective electron diffraction


Scanning electron microscopy


Transmission electron microscopy






Turn over frequencies (molH2 mol metal −1 s−1)


Turn over frequencies with respect to the metal surface (molH2 m−2 s−1)




Temperature-programmed desorption




X-ray diffraction


X-ray photoelectron spectroscopy

List of symbols


coefficient in the BET isotherm


Average size of metal particles (nm)


Average size of metal particles estimated from H2 sorption (nm)


Average size of metal particles estimated from TEM (nm)


Average size of metal particles estimated from TEM with respect to the surface (nm)


Average size of metal particles estimated from TEM with respect to the volume (nm)


Average size of metal particles estimated from XRD (nm)


Dispersion of metal (%)


Lattice parameter (nm)


Factor expressing number of metal atoms interacting with hydrogen molecule


The Scherrer’s constant (usually 0.9)


Mass of a catalyst (g)


Moles of x-CNB in the starting reaction mixture (mol)


Moles of x-CNB in the reaction mixture at time t (mol)


Moles of H2 chemisorbed on catalyst sample (mol g−1)


Moles of H2 consumed in the hydrogenation process (mol)


Moles of component “Y” in the reaction mixture (mol)


Polarity of a solvent (Pwater = 100)


Specific surface of metal particles (m2 g−1)


Surface equivalent of one metal atom (m2)


Selectivity to compound “Y” (%)


Time (s)


Flash point temperature (°C)


Autoignition temperature (°C)


Adsorbed amount expressed in the liquefied form (cm3 g−1)


Volume of micropores (cm3 g−1)


Content of the metal in the dry catalyst (wt%)


Relative pressure (x = p/ps)


Mole fraction of H2 at 25 °C and 101.325 kPa


Conversion of chloronitrobenzene (%)

Greek letters


Relative permittivity (dielectric constant)


Loose of the metal content as a portion of the initial amount of metal (%)


Solubility parameter

\(\overline{\delta }\)

Average error


Wavelength of the X-ray used for the XRD (nm)


Density (kg m−3)


Dynamic viscosity (cP)


Dipole moment (D)



This publication is a result of the project implementation: Hydrogenation in the Liquid Phase, ITMS: 26,220,220,144, supported by the Research & Development Operational Programme funded by the ERDF.


  1. Amorim C, Keane MA (2008) Palladium supported on structured and nonstructured carbon: a consideration of Pd particle size and the nature of reactive hydrogen. J Colloid Interface Sci 322(1):196–208. Google Scholar
  2. Antonetti C, Oubenali M, Galletti AMR, Serp P, Vannucci G (2012) Novel microwave synthesis of ruthenium nanoparticles supported on carbon nanotubes active in the selective hydrogenation of p-chloronitrobenzene to p-chloroaniline. Appl Catal A 421:99–107. Google Scholar
  3. Aramendıa MA, Borau V, Garcıa M, Jimenez C, Marinas JM, Urbano FJ (2003) Liquid-phase hydrodehalogenation of substituted chlorobenzenes over palladium supported catalysts. Appl Catal B 43(1):71–79. Google Scholar
  4. Aranovich GL (1991) New polymolecular adsorption isotherm. J Colloid Interface Sci 141(1):30–43. Google Scholar
  5. Arjunan V, Raj A, Sakiladevi S, Carthigayan K, Mohan S (2012) A comparative spectroscopic, electronic structure and chemical shift investigations of o-chloronitrobenzene, p-chloronitrobenzene and m-chloronitrobenzene. J Mol Struct 1007:122–135. Google Scholar
  6. Bai Q, Li D, He L, Xiao H, Sui N, Liu M (2015) Solvent-free selective hydrogenation of o-chloronitrobenzene to o-chloroaniline over alumina supported Pt nanoparticles. Prog Nat Sci Mater Int 25(3):179–184. Google Scholar
  7. Bhatia S (1989) Zeolite catalysts: principles and applications. CRC Press, Boca Raton, p 304. ISBN 9780849356285Google Scholar
  8. Blaser HU, Steiner H, Studer M (2009) Selective catalytic hydrogenation of functionalized nitroarenes: an update. ChemCatChem 1(2):210–221. Google Scholar
  9. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. Google Scholar
  10. Buttersack C, Hofmann J, Gläser R (2016) Determination of micropore volume and external surface of zeolites. Microporous Mesoporous Mater 236:63–70. Google Scholar
  11. Campos CH, Jofré M, Torres CC, Pawelec B, Fierro JLG, Reyes P (2014) Chemoselective hydrogenation of o-, p- and m-chloronitrobenzene at ambient temperature on Au/Fe2O3 catalysts. Appl Catal A 482:127–136. Google Scholar
  12. Canton P, Menegazzo F, Polizzi S, Pinna F, Pernicone N, Riello P, Fagherazzi G (2003) Structure and size of poly-domain Pd nanoparticles supported on silica. Catal Lett 88(3–4):141–146. Google Scholar
  13. Cárdenas-Lizana F, Keane MA (2013) The development of gold catalysts for use in hydrogenation reactions. J Mater Sci 48(2):543–556. Google Scholar
  14. Cárdenas-Lizana F, Lamey D, Perret N, Gómez-Quero S, Kiwi-Minsker L, Keane MA (2012) Au/Mo2N as a new catalyst formulation for the hydrogenation of p-chloronitrobenzene in both liquid and gas phases. Catal Commun 21:46–51. Google Scholar
  15. Cárdenas-Lizana F, Gómez-Quero S, Amorim C, Keane MA (2014a) Gas phase hydrogenation of p-chloronitrobenzene over Pd–Ni/Al2O3. Appl Catal A 473:41–50. Google Scholar
  16. Cárdenas-Lizana F, Wang X, Lamey D, Li M, Keane MA, Kiwi-Minsker L (2014b) An examination of catalyst deactivation in p-chloronitrobenzene hydrogenation over supported gold. Chem Eng J 255:695–704. Google Scholar
  17. Červený L, Bartoň J, Růžička V (1977) The effect of solvents on the catalytic hydrogenation of p-substituted nitrobenzenes. Collect Czechoslov Chem Commun 42(12):3402–3409. Google Scholar
  18. Chen YZ, Chen YC (1994) Hydrogenation of para-chloronitrobenzene over nickel borides. Appl Catal A 115(1):45–57. Google Scholar
  19. Chen YW, Lee DS (2013a) Selective hydrogenation of p-chloronitrobenzene on nanosized PdNiB catalysts. J Nanoparticles 2013:132180. Google Scholar
  20. Chen YW, Lee DS (2013b) Liquid phase hydrogenation of p-chloronitrobenzene on Au-Pd/TiO2 catalysts: effects of reduction methods. Mod Res Catal 2(2):25–34. Google Scholar
  21. Chen YW, Sasirekha N, Liu YC (2009) Hydrogenation of p-chloronitrobenzene over NiPtB nanoalloy catalysts. J Non Cryst Solids 355(22):1193–1201. Google Scholar
  22. Chen C, Wu Q, Chen F, Zhang L, Pan S, Bian C, Zheng X, Meng X, Xiao FS (2015a) Aluminium-rich beta zeolite-supported platinum nanoparticles for the low-temperature catalytic removal of toluene. J Mater Chem A 3(10):5556–5562. Google Scholar
  23. Chen T, Li D, Jiang H, Xiong C (2015b) High-performance Pd nanoalloy on functionalized activated carbon for the hydrogenation of nitroaromatic compounds. Chem Eng J 259:61–169. Google Scholar
  24. Chen H, He D, He Q, Jiang P, Zhou G, Fu W (2017) Selective hydrogenation of p-chloronitrobenzene over an Fe promoted Pt/AC catalyst. RSC Adv 7(46):29143–29148. Google Scholar
  25. Corma A, Serna P, Concepción P, Calvino JJ (2008) Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. JACS 130(27):8748–8753. Google Scholar
  26. de Lucas A, Ramos MJ, Dorado F, Sánchez P, Valverde JL (2005) Influence of the Si/Al ratio in the hydroisomerization of n-octane over platinum and palladium beta zeolite-based catalysts with or without binder. Appl Catal A 289(2):205–213. Google Scholar
  27. Dongil AB, Rivera-Cárcamo C, Pastor-Pérez L, Sepúlveda-Escribano A, Reyes P (2015) Ir supported over carbon materials for the selective hydrogenation of chloronitrobenzenes. Catal Today 249:72–78. Google Scholar
  28. Dongil AB, Pastor-Pérez L, Fierro JL, Escalona N, Sepúlveda-Escribano A (2016) Synthesis of palladium nanoparticles over graphite oxide and carbon nanotubes by reduction in ethylene glycol and their catalytic performance on the chemoselective hydrogenation of para-chloronitrobenzene. Appl Catal A 513:89–97. Google Scholar
  29. Dorokhov VG, Savchenko VI (2014) Kinetics of the liquid-phase catalytic hydrogenation of chlorine-containing aromatic nitro compounds in the presence of pyridine. Kinet Catal 55(4):446–455. Google Scholar
  30. Dutta D, Dutta DK (2014) Selective and efficient hydrogenation of halonitrobenzene catalyzed by clay supported Nio-nanoparticles. Appl Catal A 487:158–164. Google Scholar
  31. Dyson PJ, Jessop PG (2016) Solvent effects in catalysis: rational improvements of catalysts via manipulation of solvent interactions. Catal Sci Technol 6(10):3302–3316. Google Scholar
  32. Ertl G, Weitkamp J, Knozinger H (eds) (2008) Preparation of solid catalysts. John Wiley & Sons, HobokenGoogle Scholar
  33. Fadoni M, Lucarelli L (1999) Temperature programmed desorption, reduction, oxidation and flow chemisorption for the characterisation of heterogeneous catalysts. Theoretical aspects, instrumentation and applications. In: Dabrowski A (ed) Studies in surface science and catalysis, vol 120A. Elsevier Science B.V, Amsterdam, pp 177–225. Google Scholar
  34. Fu T, Hu P, Wang T, Dong Z, Xue N, Peng L, Guo X, Ding W (2015) High selectivity to p-chloroaniline in the hydrogenation of p-chloronitrobenzene on Ni modified carbon nitride catalyst. Chin J Catal 36(11):2030–2035. Google Scholar
  35. Fu H, Zhang L, Wang Y, Chen S, Wan Y (2016) Thermally reduced gold nanocatalysts prepared by the carbonization of ordered mesoporous carbon as a heterogeneous catalyst for the selective reduction of aromatic nitro compounds. J Catal 344:313–324. Google Scholar
  36. Gómez-Quero S, Cárdenas-Lizana F, Keane MA (2010) Solvent effects in the hydrodechlorination of 2, 4-dichlorophenol over Pd/Al2O3. AIChE J 56(3):756–767. Google Scholar
  37. Han XX, Chen Q, Zhou RX (2007) Study on the hydrogenation of p-chloronitrobenzene over carbon nanotubes supported platinum catalysts modified by Mn, Fe Co, Ni and Cu. J Mol Catal A Chem 277(1–2):210–214. Google Scholar
  38. Harkins WD, Jura G (1943) An adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the area occupied by nitrogen molecules on the surfaces of solids. J Chem Phys 11(9):431–432. Google Scholar
  39. Horáček J, Šťávová G, Kelbichová V, Kubička D (2013) Zeolite-beta-supported platinum catalysts for hydrogenation/hydrodeoxygenation of pyrolysis oil model compounds. Catal Today 204:38–45. Google Scholar
  40. Horniaková J, Králik M, Kaszonyi A, Mravec D (2001) A practical approach to the treatment of adsorption–desorption isotherms, acidity and catalytic behaviour of zeolite catalysts. Microporous Mesoporous Mater 46:287–298. Google Scholar
  41. Hudec P, Smiešková A, Židek Z, Schneider P, Šolcová O (2002) Determination of microporous structure of zeolites by t-plot method—state-of-the-art. In: Aiello R, Giordanio G, Testa P (eds) Studies in surface science and catalysis, vol 142. Elsevier Science B.V, Amsterdam, pp 1587–1594. Google Scholar
  42. Indra A, Rajamohanan PR, Gopinath CS, Bhaduri S, Lahiri GK (2011) Selective hydrogenation of chloronitrobenzenes with an MCM-41 supported platinum allyl complex derived catalyst. Appl Catal A 399:117–125. Google Scholar
  43. Jiménez C, Romero FJ, Roldán R, Marinas JM, Gómez JP (2003) Hydroisomerization of a hydrocarbon feed containing n-hexane, n-heptane and cyclohexane on zeolite-supported platinum catalysts. Appl Catal A 249(1):175–185. Google Scholar
  44. Johansson M, Skulason E, Nielsen G, Murphy S, Nielsen RM, Chorkendorff I (2010) Hydrogen adsorption on palladium and palladium hydride at 1bar. Surf Sci 604(7):718–729. Google Scholar
  45. Karge HG (2008) Concepts and analysis of surface acidity and basicity. In Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn, vol 8. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1096–1122. ISBN: 9783527312412Google Scholar
  46. Králik M (2014) Adsorption, chemisorption, and catalysis. Chem Pap 68(12):1625–1638. Google Scholar
  47. Kralik M, Vallusova Z, Laluch J, Mikulec J, Macho V (2008) Comparison of ruthenium catalysts supported on beta and mordenite in the hydrocycloalkylkation of benzene. Pet Coal 50(1):44–51Google Scholar
  48. Králik M, Vallušová Z, Major P, Takáčová A, Hronec M, Gašparovičová D (2014) Hydrogenation of chloronitrobenzenes over Pd and Pt catalysts supported on cationic resins. Chem Pap 68(12):1690–1700. Google Scholar
  49. Kratky V, Kralik M, Mecarova M, Stolcova M, Zalibera L, Hronec M (2002) Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes. Appl Catal A 235:225–231. Google Scholar
  50. Krátky V, Králik M, Kaszonyi A, Štolcová M, Zalibera L, Mečárová M, Hronec M (2003) Reaction pathways and the role of solvent in the hydrogenation of chloronitrobenzenes. Collect Czechoslov Chem Commun 68:1819–1832. Google Scholar
  51. Lecloux AJ (1981) Texture of catalysts. In: Anderson JR, Boudart M (eds) Catalysis: science and technology, vol 2. Springer, Berlin, pp 171–230. ISBN 354010593XGoogle Scholar
  52. Lee DS, Chen YW (2013) Hydrogenation of p-chloronitrobenzene on La-doped NiMoB nanocluster catalysts. Chin J Catal 34(11):2018–2028. Google Scholar
  53. Li H, Lin H, Hu Y, Li H, Li P, Zhou X (2011) Hollow Pt-Ni alloy nanospheres with tunable chamber structure and enhanced activity. J Mater Chem 21(45):18447–18453. Google Scholar
  54. Li HB, Liu L, Ma XY (2016) Effective hydrogenation of haloaromatic nitro compounds catalysed by iridium nanoparticles deposited on multiwall carbon nanotubes. Synth React Inorg Metal Org Nano Metal Chem 46(10):1499–1505. Google Scholar
  55. Liu X, Mäki-Arvela P, Aho A, Vajglova Z, Gun’ko VM, Heinma I, Kumar N, Eränen K, Salmi T, Murzin DY (2018) Zeta Potential of beta zeolites: influence of structure, acidity, pH, temperature and concentration. Molecules 23(4):946. Google Scholar
  56. Lyu J, Wang J, Lu C, Ma L, Zhang Q, He X, Li X (2014) Size-dependent halogenated nitrobenzene hydrogenation selectivity of Pd nanoparticles. J Phys Chem C 118(5):2594–2601. Google Scholar
  57. Lyubimenko EN, Goltsova MV (2014) The form changing of palladium plate induced by small one-side hydrogen impacts. Metallofiz Noveishie Tekhnol 36(2):247–258. (in Russian) Google Scholar
  58. Ma L, Wang J, Wang H, Zhang Q, Lu C, He X, Li X (2017) High halogenated nitrobenzene hydrogenation selectivity over nano Ir particles. Chin J Chem Eng 25(3):306–312. Google Scholar
  59. Mo M, Zhou M, Xie M, Han L, Guo X, Ding W (2015) Tri-component noncrystalline Ni–Cu–B nanotubes with enhanced stability and catalytic performance for hydrogenation of p-chloronitrobenzene. Catal Commun 64:66–69. Google Scholar
  60. Murzin DY (2016) Solvent effects in catalysis: implementation for modelling of kinetics. Catal Sci Technol 6(14):5700–5713. Google Scholar
  61. Ning JB, Xu J, Liu J, Miao H, Ma H, Chen C, Li XQ, Zhou L, Yu W (2007) A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzene in ethanol. Catal Commun 8:1763–1766. Google Scholar
  62. Nuzhdin AL, Moroz BL, Bukhtiyarova GA, Reshetnikov SI, Pyrjaev PA, Aleksandrov PV, Bukhtiyarov VI (2015) Selective liquid-phase hydrogenation of a nitro group in substituted nitrobenzenes over Au/Al2O3 catalyst in a packed-bed flow reactor. ChemPlusChem 80(12):1741–1749. Google Scholar
  63. Phung TK, Busca G (2015) Diethyl ether cracking and ethanol dehydration: acid catalysis and reaction paths. Chem Eng J 272:92–101. Google Scholar
  64. Pietrowski M (2012) Recent developments in heterogeneous selective hydrogenation of halogenated nitroaromatic compounds to halogenated anilines. Curr Org Synth 9(4):470–487. Google Scholar
  65. Pizarro AH, Molina CB, Casas JA, Rodriguez JJ (2014) Catalytic HDC/HDN of 4-chloronitrobenzene in water under ambient-like conditions with Pd supported on pillared clay. Appl Catal B 158:175–181. Google Scholar
  66. Plößer J, Dedeaga F, Lucas M, Claus P (2016a) The effect of catalyst preparation conditions on the synthesis of menthol from citronellal on Ru/H-BEA. Appl Catal A 516:100–108. Google Scholar
  67. Plößer J, Lucas M, Warna J, Salmi T, Murzin DY, Claus P (2016b) Kinetics of the one-pot transformation of citronellal to menthols on Ru/H-BEA catalysts. Org Process Res Dev 20(9):1647–1653. Google Scholar
  68. Ragaini V, Giannantonio R, Magni P, Lucarelli L, Leofanti G (1994) Dispersion measurement by the single introduction method coupled with the back-sorption procedure: a chemisorption and TPD study of the different chemisorbed hydrogen species: II. Pd on alumina. J Catal 146(1):116–125. Google Scholar
  69. Regalbuto JR, Antos GJ (2004) Preparation of reforming catalysts. In: Antos GJ, Aitani AM (eds) Catalytic naphtha reforming, revised and expanded. Chemical industries. CRC Press, Boca Raton, pp 133–186 ISBN: 0824750586, 97808203913505 Google Scholar
  70. Samant MG, Boudart M (1991) Support effects on electronic structure of platinum clusters in Y zeolite. J Phys Chem 95(10):4070–4074. Google Scholar
  71. Satterfield CN (1980) Heterogeneous catalysis in practice. McGraw-Hill chemical engineering series. McGraw-Hill, New YorkGoogle Scholar
  72. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Königlichen Gesellschaft der Wissenschafen zu Göttingen 26(2):98–100 (in German) Google Scholar
  73. Schneider P (1995) Adsorption isotherms of microporous-mesoporous solids revisited. Appl Catal A 129:157–165. Google Scholar
  74. Serna P, Corma A (2015) Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes. ACS Catal 5(12):7114–7121. Google Scholar
  75. Skripov NI, Belykh LB, Sterenchuk TP, Schmidt FK (2015) Effect of the nature of a solvent on properties of Pd–P catalysts in hydrogenation of ortho-chloronitrobenzene. Russ J Appl Chem 88(8):1255–1260. Google Scholar
  76. Smallwood I (2012) Handbook of organic solvent properties. Butterworth-Heinemann, OxfordGoogle Scholar
  77. Song J, Huang ZF, Pan L, Li K, Zhang X, Wang L, Zou JJ (2018) Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl Catal B 227:386–408. Google Scholar
  78. Sundaraganesan N, Karpagam J, Sebastian S, Cornard JP (2009) The spectroscopic (FTIR, FT-IR gas phase and FT-Raman), first order hyperpolarizabilities, NMR analysis of 2,4-dichloroaniline by ab initio HF and density functional methods. Spectrochim Acta Part A 73:11–19. Google Scholar
  79. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069. Google Scholar
  80. Tkachenko OP, Kustov LM, Tarasov AL, Klementiev KV, Kumar N, Murzin DY (2009) Pd/H-Beta catalysts: characterization and reactivity in piperonyl alcohol selective oxidation. Appl Catal A 359(1–2):144–150. Google Scholar
  81. Treacy MM, Higgins JB (2007) Collection of simulated XRD powder patterns for zeolites fifth (5th) revised edition. Elsevier, AmsterdamGoogle Scholar
  82. Trueba M, Trasatti SP (2005) γ-Alumina as a support for catalysts: a review of fundamental aspects. Eur J Inorg Chem 17:3393–3403. Google Scholar
  83. Tungler A, Tarnai T, Hegedus L, Fodor K, Máthé T (1998) Palladium-mediated heterogeneous catalytic hydrogenations. Selectivity of liquid-phase reactions for the fine chemicals industry. Platin Met Rev 42(3):108–115Google Scholar
  84. Villegas JI, Kumar N, Heikkilä T, Lehto VP, Salmi T, Murzin DY (2007) A study on the dimerization of 1-butene over beta zeolite. Top Catal 45(1–4):187–190. Google Scholar
  85. Wang J, Fan G, Wang H, Li F (2011) Synthesis, characterization, and catalytic performance of highly dispersed supported nickel catalysts from Ni–Al layered double hydroxides. Ind Eng Chem Res 50(24):13717–13726. Google Scholar
  86. Wang Y, Rong Z, Wang Y, Zhang P, Wang Y, Qu J (2015) Ruthenium nanoparticles loaded on multiwalled carbon nanotubes for liquid-phase hydrogenation of fine chemicals: an exploration of confinement effect. J Catal 329:95–106. Google Scholar
  87. Wang W, Xu W, Thapa KB, Yang X, Liang J, Zhu L, Zhu J (2017) Morpholine-modified Pd/γ-Al2O3@ASMA pellet catalyst with excellent catalytic selectivity in the hydrogenation of p-chloronitrobenzene to p-chloroaniline. Catalysts 7(10):292. Google Scholar
  88. Xiao C, Wang X, Lian C, Liu H, Liang M, Wang Y (2012) Selective hydrogenation of halonitrobenzenes. Curr Org Chem 16(2):280–296. Google Scholar
  89. Xu Q, Wang L, Chen J, Li X, Li R (2007) Selective hydrogenation of p-chloronitrobenzene over Ru–Ir/γ-Al2O3 catalyst modified by organic amines. Chin J Catal 28(7):579–581. Google Scholar
  90. Yang J, Xiong C, Han X, Zhou L (2009) Liquid phase hydrogenation of chloronitrobenzene to chloroaniline with PtM/CNTs (M=La, Ce, Pr, Nd and Sm) catalysts. Ind J Chem 48A:1358–1363Google Scholar
  91. Yang B, Zhang Q, Ma X, Kang J, Shi J, Tang B (2016) Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes. Nano Res 9(7):1879–1890. Google Scholar
  92. Young CL (1981) Hydrogen and deuterium. In: IUPAC solubility data series, vol 5/6. Pergamon press, OxfordGoogle Scholar
  93. Yu K, Kumar N, Aho A, Roine J, Heinmaa I, Murzin DY, Ivaska A (2016) Determination of acid sites in porous aluminosilicate solid catalysts for aqueous phase reactions using potentiometric titration method. J Catal 335:117–124. Google Scholar
  94. Yu W, Lin HW, Tan CS (2017) Direct synthesis of Pd incorporated in mesoporous silica for solvent-free selective hydrogenation of chloronitrobenzenes. Chem Eng J 325:124–133. Google Scholar
  95. Zhang X, Zhang P, Yu H, Ma Z, Zhou S (2015) Mesoporous KIT-6 supported Pd–MxOy (M=Ni Co, Fe) catalysts with enhanced selectivity for p-chloronitrobenzene hydrogenation. Catal Lett 145(3):784–793. Google Scholar
  96. Zhao B, Chen YW (2010) Hydrogenation of p-chloronitrobenzene on Mo, La, Fe, and W-modified NiCoB nanoalloy catalysts. J Non Cryst Solids 356:839–847. Google Scholar
  97. Zhao Z, Yang H, Li Y (2014) Synergistic effect from Lewis acid and the Ni–W2C/AC catalyst for highly active and selective hydrogenation of aryl nitro to aryl amine. RSC Adv 4(43):22669–22677. Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Institute of Organic Chemistry, Catalysis and PetrochemistrySlovak University of Technology in BratislavaBratislavaSlovakia
  2. 2.VUCHT a.s, Areal Duslo a.sŠaľaSlovakia
  3. 3.SLOVNAFT, a.sBratislavaSlovakia
  4. 4.Faculty of MetallurgyTechnical University of KošiceKošiceSlovakia

Personalised recommendations