Advertisement

Preparation and characterization of heterogeneous weak base anion-exchange membranes

  • Eliška StránskáEmail author
  • Kristýna Weinertová
  • David Neděla
  • Jan Křivčík
  • Natália Václavíková
Original Paper
  • 42 Downloads

Abstract

The preparation of new heterogeneous anion-exchange membranes containing particles of a weak basic ion-exchange resin in a polypropylene matrix is described. For comparison, a heterogeneous membrane consisting of a strong basic functional group was also prepared. The anion-exchange membranes were prepared in a laboratory discontinuous homogenizer and extruder followed by compression of extruded membranes to ensure the homogeneity of the test sample. Parameters important for a subsequent transfer of production from laboratory to an industrial scale, torque and head pressure, were observed. Electrochemical and mechanical properties of resulting membranes, in particular their ion-exchange capacity, areal and specific resistances, permselectivies, swelling in water, 1 mol dm−3 NaOH, and 1 mol dm−3 HCl solution, were determined. Weak basic ion-exchange resin Purolite A830 behaved similarly as the strong basic ion-exchange resin during processing, and the resulting membrane showed similar electrochemical and physical properties. The heterogeneous anion-exchange membranes with other weak basic anion-exchange resins showed unsuitable swelling, which was reflected in electrochemical properties of these ion-exchange membranes.

Keywords

Weak base anion-exchange membrane Heterogeneous membrane Characterization of ion-exchange membrane 

List of symbols

I

Current (A)

IEC

Ion-exchange capacity (meq g−1)

P

Permselectivity (%)

RA

Areal resistance (Ω cm2)

Rs

Specific resistance (Ω cm)

S

Active area (cm2)

th

Thickness (cm)

U

Potential (V)

Δlg

Dimensional changes in length (%)

Δth

Dimensional changes in thickness (%)

Δwd

Dimensional changes in width (%)

ε

Strain (%)

σ

Stress (MPa)

Subscripts

IEM

Ion-exchange membrane

meas

Measured

theor

Theoretical

Notes

Acknowledgements

The work was carried out within the framework of project no. LO1418 “Progressive development of Membrane Innovation Centre” supported by the program NPU I Ministry of Education Youth and Sports of the Czech Republic, using the infrastructure of the Membrane Innovation Centre.

References

  1. Agel E, Bouet J, Fauvarque JF (2001) Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources 101:267–274.  https://doi.org/10.1016/S0378-7753(01)00759-5 CrossRefGoogle Scholar
  2. Brauns E, Bossaer J, Toye S, Mijnendoncki K, Pinoy L, Van der Bruggen B (2012) A study of electrodialysis operating with mixed flow mode. Sep Purif Technol 98:356–365.  https://doi.org/10.1016/j.seppur.2012.07.011 CrossRefGoogle Scholar
  3. Das HS, Tan ChW, Yatim AHM (2017) Fuel cell hybrid electric vehicles: a review on power conditioning units and topologies. Renew Sustain Energy Rev 76:268–291.  https://doi.org/10.1016/j.rser.2017.03.056 CrossRefGoogle Scholar
  4. Długołęcki P, Ogonowski P, Metz SJ, Saakes M, Nijmeijer K, Wessling M (2010) On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. J Membr Sci 349:369–379.  https://doi.org/10.1016/j.memsci.2009.11.069 CrossRefGoogle Scholar
  5. Doughty HW (1924) Mohr’s method for the determination of silver and halogens in other than neutral solutions. J Am Chem Soc 46(12):2707–2709.  https://doi.org/10.1021/ja01677a014 CrossRefGoogle Scholar
  6. Gierczyk B, Cegłowski M, Zalas M (2015) New gel-like polymers as selective weak-base anion exchangers. PLoS One 10(5):e0122891.  https://doi.org/10.1371/journal.pone.0122891 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gohil GS, Shahi VK, Rangarajan RJ (2004) Comparative studies on electrochemical characterization of homogeneous and heterogeneous type of ion-exchange membrane. J Membr Sci 240:211–219.  https://doi.org/10.1016/j.memsci.2004.04.022 CrossRefGoogle Scholar
  8. Haerens K, de Vreese P, Matthijs E, Pinoy L, Binnemans K, Van der Bruggen B (2012) Production of ionic liquids by electrodialysis. Sep Purif Technol 97:90.  https://doi.org/10.1016/j.seppur.2012.02.017 CrossRefGoogle Scholar
  9. Hajduková J, Thomas J, Malíková P, Matúšková V (2015) Membrane processes for industrial wastewater treatment—demineralization station. Geosci Eng 59(4):11–16.  https://doi.org/10.2478/gse-2014-0063 CrossRefGoogle Scholar
  10. Helfferich F (1995) Ion exchange. Dover Publication Inc, New YorkGoogle Scholar
  11. Hong G, Zhang B, Glabman S, Uzal N, Dou X, Zhang H et al (2015) Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review. J Membr Sci 486:71–88.  https://doi.org/10.1016/j.memsci.2015.02.039 CrossRefGoogle Scholar
  12. Inamuddin I, Luqman M (eds) (2012) Ion exchange technology I: theory and materials. Springer, New YorkGoogle Scholar
  13. Křivčík J, Vladařová J, Hadrava J, Černín A, Brožová L (2010) The effect of an organic ion-exchange resin on properties of heterogeneous ion-exchange membrane. Desalination Water Treat 14(1–3):179–184.  https://doi.org/10.5004/dwt.2010.1025 CrossRefGoogle Scholar
  14. Křivčík J, Neděla D, Weinertová K, Stránská E (2017) Non-laminated ion-exchange membranes. Desalination Water Treat 75:368–375.  https://doi.org/10.5004/dwt.2017.20592 CrossRefGoogle Scholar
  15. Lasanta C, Gómez J (2012) Tartrate stabilization of wines. Trends Food Sci Technol 28(1):52–59.  https://doi.org/10.1016/j.tifs.2012.06.005 CrossRefGoogle Scholar
  16. Lopez AM, Hestekin JA (2015) Improved organic acid purification through wafer enhanced electrodeionization utilizing ionic liquids. J Membr Sci 493:200–205.  https://doi.org/10.1016/j.memsci.2015.06.008 CrossRefGoogle Scholar
  17. Luo J, Wu C, Xu T, Wu Y (2011) Diffusion dialysis-concept, principle and applications. J Membr Sci 366(1–2):1–16.  https://doi.org/10.1016/j.memsci.2010.10.028 CrossRefGoogle Scholar
  18. Nayar KG, Sundararaman P, O’Connor CL, Schacherl JD, Heath ML, Orozco MG, Shah SR, Wright NC (2017) Feasibility study of an electrodialysis system for in-home water desalination in urban India. Dev Eng 2:38–46.  https://doi.org/10.1016/j.deveng.2016.12.001 CrossRefGoogle Scholar
  19. Neděla D, Křivčík J, Válek R, Stránská E, Marek J (2015) Influence of water content on properties of a heterogeneous bipolar membrane. Desalination Water Treat 56(12):3269–3272.  https://doi.org/10.1080/19443994.2014.981412 CrossRefGoogle Scholar
  20. Nojavan S, Zare Mohammadi K (2017) Application of fuel cell and electrolyzer as hydrogen energy storage system in energy management of electricity energy retailer in the presence of the renewable energy sources and plug. Energy Convers Manag 136:404.  https://doi.org/10.1016/j.enconman.2017.01.017 CrossRefGoogle Scholar
  21. Serre E, Rozoy E, Pedneault C, Lacour S, Bazinet L (2016) Deacidification of cranberry juice by electrodialysis: impact of membrane types and configurations on acid migration and juice physicochemical characteristics. Sep Purif Technol 163:228–237.  https://doi.org/10.1016/j.seppur.2016.02.044 CrossRefGoogle Scholar
  22. Stránská E, Neděla D, Válek R, Křivčík J (2015) Optimization of preparation of heterogeneous cation exchange membranes using different particle size distributions of ion exchange resins. Chem Listy 109:701–709Google Scholar
  23. Stránská E, Weinertová K, Neděla D, Křivčík J (2018) Preparation and basic characterization of heterogeneous weak acid cation exchange membrane. Chem Pap 72(1):89–98.  https://doi.org/10.1007/s11696-017-0260-2 CrossRefGoogle Scholar
  24. Suarez G, Nguyen NTK, Rendtorff NM, Sakka Y, Uchikoshi K (2016) Electrophoretic deposition for obtaining dense lanthanum silicate oxyapatite (LSO). Ceram Int 42(16):19283.  https://doi.org/10.1016/j.ceramint.2016.09.095 CrossRefGoogle Scholar
  25. Sun X, Lu H, Wang J (2016) Brackish water desalination using electrodeionization reversal. Chem Eng Process Process Intensif 104:262–270.  https://doi.org/10.1016/j.cep.2016.03.014 CrossRefGoogle Scholar
  26. Valero D, García AV, Expósito E, Aldaz A, Montiel V (2015) Application of electrodialysis for the treatment of almond industry wastewater. J Membr Sci 476:580–589.  https://doi.org/10.1016/j.memsci.2014.11.007 CrossRefGoogle Scholar
  27. Wang D, Gao X, Zhang Y, Mao L, Wang Z, Gao C (2017) Recovery of petroleum sulfonate from petrochemical dispersion by modified three-compartment electrodialysis. Sep Purif Technol 186:135–144.  https://doi.org/10.1016/j.seppur.2017.05.042 CrossRefGoogle Scholar
  28. Weinertová K, Křivčík J, Neděla D, Stránská E, Václavíková N (2018) Optimization of polyethylene binder for heterogeneous ion exchange membrane manufacture to improve its mechanical stability. J Appl Polym Sci 135:46415.  https://doi.org/10.1002/app.46415 CrossRefGoogle Scholar
  29. Wheaton RM, Leferre LJ (2000) Dowex ion exchange resins. Dow Chemical, Michigan (Published June 2000) Google Scholar
  30. Zhang Z, Chen A (2016) Simultaneous removal of nitrate and hardness ions from groundwater using electrodeionization. Sep Purif Technol 164:107.  https://doi.org/10.1016/j.seppur.2016.03.033 CrossRefGoogle Scholar
  31. Zhang W, Miao M, Pan J, Sotto A, Shen J, Gao C, der Bruggen BV (2017) Separation of divalent ions from seawater concentrate to enhance the purity of coarse salt by electrodialysis with monovalent-selective membranes. Desalination 411:28–37.  https://doi.org/10.1016/j.desal.2017.02.008 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.MemBrain s.r.oStráž pod RalskemCzech Republic

Personalised recommendations